【24h】

Smooth Ternary Subdivision Surfaces with Bounded Curvature

机译:具有界曲率的光滑三分细分曲面

获取原文
获取原文并翻译 | 示例

摘要

Binary subdivision schemes, such as Cat mull-Clark scheme or Loop scheme, fail to characterize local shape near the irregular vertex. Address the problem, this paper proposes a smooth ternary subdivision scheme for quadrilateral meshes with bounded curvature. The scheme is based on a 1-9 splitting operator. The subdivision rules for regular vertices are derived from Bi-cubic B-spline surface and the rules for irregular vertices are established through the Fourier analysis of the regular case. By analyzing the eigen structures and characteristic maps, the proposed subdivision scheme can produces C2 continuous limit surfaces for regular meshes while achieves G1 continuity at irregular vertices. Compared with typical binary subdivision schemes, the proposed scheme has bounded curvatures and the fast convergence speed. Furthermore, it maintains arbitrary topological quadrilateral meshes.
机译:二进制细分方案(例如Cat mull-Clark方案或Loop方案)无法描述不规则顶点附近的局部形状。针对这一问题,本文提出了一种有界曲率的四边形网格的光滑三元细分方案。该方案基于1-9拆分运算符。规则顶点的细分规则是从双三次B样条曲面导出的,而规则顶点的规则是通过对规则情况进行傅立叶分析而建立的。通过分析特征结构和特征图,提出的细分方案可以生成规则网格的C2连续极限曲面,同时在不规则顶点上实现G1连续性。与典型的二元细分方案相比,该方案具有有限的曲率和较快的收敛速度。此外,它保持任意拓扑四边形网格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号