首页> 外文会议>International Conference on Intelligent Data Engineering and Automated Learing(IDEAL 2005); 20050706-08; Brisbane(AU) >Dimensional Reduction of Large Image Datasets Using Non-linear Principal Components
【24h】

Dimensional Reduction of Large Image Datasets Using Non-linear Principal Components

机译:使用非线性主成分的大图像数据集降维

获取原文
获取原文并翻译 | 示例

摘要

In this paper we apply a Neural Network (NN) to reduce image data-set, distilling the massive datasets down to a new space of smaller dimension. Due to the possibility of these data have nonlinearities, traditional multivariate analysis, like the Principal Component Analysis (PCA), may not represent reality. Alternatively, Nonlinear Principal Component Analysis (NLPCA) can be performed by a NN model to fulfill that deficiency. However, when the dimension of the image increases, NN may easily saturate. This work presents an original methodology associated with the use of a set of cascaded multi-layer NN with a bottleneck structure to extract nonlinear information of the large set of image data. We illustrate its good performance with a set of tests against comparisons using this methodology and PCA in the treatment of oceano-graphic data associated with mesoscale variability of an oceanic boundary current.
机译:在本文中,我们应用神经网络(NN)来减少图像数据集,将海量数据集提炼到较小尺寸的新空间。由于这些数据可能具有非线性,传统的多元分析(例如主成分分析(PCA))可能无法代表现实。或者,可以通过NN模型执行非线性主成分分析(NLPCA)来弥补这一缺陷。但是,当图像的尺寸增加时,NN可能容易饱和。这项工作提出了与使用具有瓶颈结构的一组级联多层NN提取大量图像数据的非线性信息相关的原始方法。我们通过使用该方法和PCA进行比较的一系列测试来说明其良好的性能,该方法用于处理与海洋边界流的中尺度变化相关的海洋图形数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号