【24h】

Using Learned Data Patterns to Detect Malicious Nodes in Sensor Networks

机译:使用学习的数据模式来检测传感器网络中的恶意节点

获取原文
获取原文并翻译 | 示例

摘要

As sensor network applications often involve remote, distributed monitoring of inaccessible and hostile locations, they are vulnerable to both physical and electronic security breaches. The sensor nodes, once compromised, can send erroneous data to the base station, thereby possibly compromising network effectiveness. We consider sensor nodes organized in a hierarchy where the non-leaf nodes serve as the aggregators of the data values sensed at the leaf level and the Base Station corresponds to the root node of the hierarchy. To detect compromised nodes, we use neural network based learning techniques where the nets are used to predict the sensed data at any node given the data reported by its neighbors in the hierarchy. The differences between the predicted and the reported values is used to update the reputation of any given node. We compare a Q-learning schemes with the Beta reputation management approach for their responsiveness to compromised nodes. We evaluate the robustness of our detection schemes by varying the members of compromised nodes, patterns in sensed data, etc.
机译:由于传感器网络应用通常涉及对无法访问和敌对位置的远程分布式监视,因此它们容易受到物理和电子安全漏洞的攻击。传感器节点一旦受到威胁,便会向基站发送错误的数据,从而有可能损害网络的有效性。我们认为传感器节点按层次结构进行组织,其中非叶节点充当在叶级别上感知的数据值的聚合器,而基站对应于层次结构的根节点。为了检测受感染的节点,我们使用基于神经网络的学习技术,其中网络根据给定的邻居在层次结构中报告的数据,使用网络来预测任何节点的感知数据。预测值和报告值之间的差异用于更新任何给定节点的信誉。我们比较了Q学习方案和Beta信誉管理方法对受感染节点的响应能力。我们通过更改受损节点的成员,所感测数据中的模式等来评估检测方案的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号