首页> 外文会议>International Conference on Computer Analysis of Images and Patterns(CAIP 2007); 20070827-29; Vienna(AT) >Biomarker Selection System, Employing an Iterative Peak Selection Method, for Identifying Biomarkers Related to Prostate Cancer
【24h】

Biomarker Selection System, Employing an Iterative Peak Selection Method, for Identifying Biomarkers Related to Prostate Cancer

机译:生物标记物选择系统,采用迭代峰选择方法,用于鉴定与前列腺癌相关的生物标记物

获取原文
获取原文并翻译 | 示例

摘要

A biomarker selection system is proposed for identifying biomarkers related to prostate cancer. MS-spectra were obtained from the National Cancer Institute Clinical Proteomics Database. The system comprised two stages, a preprocessing stage, which is a sequence of MS-processing steps consisting of MS-spectrum smoothing, novel iterative peak selection, peak alignment, and a classification stage employing the PNN classifier. The proposed iterative peak selection method was based on first applying local thresholding, for determining the MS-spectrum noise level, and second applying an iterative global threshold estimation algorithm, for selecting peaks at different intensity ranges. At each global threshold, an optimum sub-set of these peaks was used to design the PNN classifier for highest performance, in discriminating normal cases from cases with prostate cancer, and thus indicate the best m/z values. Among these values, the information rich biomarkers 1160.8, 2082.2, 3595.9, 4275.3, 5817.3, 7653.2, that have been associated with the prostate gland, are proposed for further investigation.
机译:提出了一种生物标志物选择系统,用于鉴定与前列腺癌有关的生物标志物。 MS光谱从美国国家癌症研究所临床蛋白质组学数据库获得。该系统包括两个阶段:预处理阶段,它是一系列MS处理步骤,包括MS频谱平滑,新颖的迭代峰选择,峰对齐以及使用PNN分类器的分类阶段。所提出的迭代峰选择方法基于首先应用局部阈值确定MS频谱噪声水平,然后应用迭代全局阈值估计算法以选择不同强度范围的峰。在每个全局阈值处,这些峰的最佳子集用于设计PNN分类器以实现最高性能,从而将正常病例与前列腺癌病例区分开,从而表明最佳m / z值。在这些值中,建议将与前列腺相关的信息丰富的生物标记1160.8、2082.2、3595.9、4275.3、5817.3、7653.2进行进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号