【24h】

A Family of Trigonometrically-fitted Partitioned Runge-Kutta Symplectic Methods

机译:三角拟合分区Runge-Kutta辛方法的族

获取原文
获取原文并翻译 | 示例

摘要

We are presenting a family of trigonometrically fitted partitioned Runge-Kutta symplectic methods of fourth order with six stages. The solution of the one dimensional time independent Schroedinger equation is considered by trigonometrically fitted symplectic integrators. The Schrodinger equation is first transformed into a Hamiltonian canonical equation. Numerical results are obtained for the one-dimensional harmonic oscillator and the exponential potential.
机译:我们提出了一系列三角拟合的划分的Runge-Kutta辛算法,具有六个阶段的四阶。一维时间独立的Schroedinger方程的解由三角拟合的辛积分器考虑。首先将薛定inger方程转换为哈密顿正则方程。获得了一维谐波振荡器和指数势的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号