【24h】

The curvilinear mesh method for analysis of complex thin walled structures

机译:复杂薄壁结构分析的曲线网格法

获取原文
获取原文并翻译 | 示例

摘要

Complex plate and shell type structures are frequently analysed numerically on the basis of a super-element method. The FEM is usually used to obtain the stiffness matrix of a super-element (sometimes in several stages). In this paper the Curvilinear Mesh Method (CMM) which can be efficiently used for the same purpose is presented. The method uses an approach similar to the finite difference method but has a number of important advantages. One is the higher speed of convergence of numerical solutions due to the exclusion of effects produced by approximating rigid body motion. Another advantage is the fact that the equations of the CMM remain valid on the lines of slope discontinuity of the median surface. This makes it possible to analyse sub-structures as a whole even if the sub-structures consist of several parts with different geometry. CMM is based on the equations of classis theory of thin shells in invariant form. The median surface of a sub-structure is described in general curvilinear co-ordinates. In the super-element procedure the structure considered to be geometrically linear and elastic. The interaction between sub-structures is modelled using a generalised displacement method, in which the unknown at boundary nodes of the sub-structure are of the same type as those at internal nodes and also because there is a need to determine the degree of static indeterminacy and no need to choose the primary structure. To verify the presented numerical technique, the stress-strain state of a cylindrical shell with diaphragms has been analysed. Results obtained using CMM in a super-element procedure are compared with results obtained by the FEM and CMM without sub structuring. A comparison of results shows that there is little difference between these three methods in terms of accuracy.
机译:复杂的板壳型结构经常在超单元法的基础上进行数值分析。有限元法通常用于获得超单元的刚度矩阵(有时分几个阶段)。在本文中,提出了可以有效用于相同目的的曲线网格方法(CMM)。该方法使用类似于有限差分法的方法,但是具有许多重要的优点。一是由于排除了近似刚体运动产生的影响,因此数值解的收敛速度更高。另一个优点是,CMM方程在中值曲面的坡度不连续线上仍然有效。即使子结构由具有不同几何形状的多个零件组成,这也使得可以整体分析子结构。 CMM基于不变形式的薄壳分类理论的方程。子结构的中间表面以一般的曲线坐标表示。在超单元过程中,该结构被认为是几何线性和弹性的。使用广义位移方法对子结构之间的相互作用进行建模,其中子结构边界节点处的未知数与内部节点处的未知数具有相同的类型,并且还因为需要确定静态不确定性的程度无需选择主要结构。为了验证所提出的数值技术,已经分析了带有隔膜的圆柱壳的应力-应变状态。将在超单元过程中使用CMM获得的结果与在没有子结构的情况下通过FEM和CMM获得的结果进行比较。结果比较表明,这三种方法在准确性方面几乎没有差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号