首页> 美国卫生研究院文献>other >Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies
【2h】

Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

机译:模拟复杂3D刚体流体结构相互作用的曲线浸入边界法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI algorithm. The stabilizing role of under-relaxation is also clarified and an upper bound of the required for stability under-relaxation coefficient is derived.
机译:Ge和Sotiropoulos的锐界面CURVIB方法[L. Ge,F. Sotiropoulos,解决具有复杂浸入边界的曲线域中3D非稳态不可压缩Navier-Stokes方程的数值方法,计算物理杂志225(2007)1782-1809]已扩展为模拟流体结构相互作用(FSI)问题涉及经历大结构位移的复杂3D刚体。 FSI求解器采用分区FSI解决方案方法,同时实现了松散和强耦合策略。沉入物体和流体之间的界面通过拉格朗日网格离散化,并通过显式的前跟踪方法进行跟踪。开发了一种有效的光线跟踪算法,以快速识别背景网格和移动物体之间的关系。针对两个FSI问题进行了数值实验:涡旋诱发弹性安装的圆柱体的振动,并在生理条件下流过双叶机械心脏瓣膜。对于这两种情况,计算结果与基准模拟和实验测量结果都非常吻合。数值实验表明,结构的性质(质量,几何形状)和局部流动条件都可以在确定FSI算法的稳定性方面发挥重要作用。在某些条件下,即使采用强耦合FSI,也会产生无条件的不稳定迭代方案。但是,在这种情况下,将强耦合迭代与欠松弛相结合并结合Aitken的加速技术可有效解决稳定性问题。进行理论分析以解释数值实验的结果。结果表明,附加质量与结构质量的比以及流体施加在结构上的力或力矩的局部时间变化率的符号决定了FSI算法的稳定性和收敛性。还阐明了欠松弛的稳定作用,并得出了稳定性欠松弛系数所需的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号