【24h】

Event detection: Exploiting socio-physical interactions in physical spaces

机译:事件检测:利用物理空间中的社会物理互动

获取原文

摘要

This paper investigates how digital traces of people's movements and activities in the physical world (e.g., at college campuses and commutes) may be used to detect local, short-lived events in various urban spaces. Past work that use occupancy-related features can only identify high-intensity events (those that cause large-scale disruption in visit patterns). In this paper, we first show how longitudinal traces of the coordinated and group-based movement episodes obtained from individual-level movement data can be used to create a socio-physical network (with edges representing tie strengths among individuals based on their physical world movement & collocation behavior). We then investigate how two additional families of socio-physical features: (i) group-level interactions observed over shorter timescales and (ii) socio-physical network tie-strengths derived over longer timescales, can be used by state-of-the-art anomaly detection methods to detect a much wider set of both high & low intensity events. We utilize two distinct datasets-one capturing coarse-grained SMU campus-wide indoor location data from hundreds of students, and the other capturing commuting behavior by millions of users on Singapore's public transport network-to demonstrate the promise of our approaches: the addition of group and socio-physical tie-strength based features increases recall (the percentage of events detected) more than 2-folds (to 0.77 on the SMU campus and to 0.73 at sample MRT stations), compared to pure occupancy-based approaches.
机译:本文研究了如何在现实世界中(例如在大学校园和通勤中)人们活动和活动的数字轨迹来检测各种城市空间中的局部短暂事件。过去使用占用相关功能的工作只能识别高强度事件(那些会导致访问模式大规模中断的事件)。在本文中,我们首先展示了如何使用从个人水平运动数据获得的协调运动和基于群体的运动情节的纵向轨迹来创建一个社会物理网络(边缘代表了基于他们的物理世界运动的个人之间的联系强度)和搭配行为)。然后,我们研究了社会状态的另外两个家族:(i)在较短的时间尺度上观察到的群体层次的相互作用,以及(ii)在较长的时间尺度上获得的社会物理网络联系强度,可以由当前状态使用先进的异常检测方法,可以检测出范围更广的高强度和低强度事件。我们利用两个截然不同的数据集-一个捕获来自数百名学生的SMU校园范围内的粗粒度室内位置数据,另一个捕获在新加坡公共交通网络上数百万用户的通勤行为-以证明我们的方法的前景:与基于单纯占用率的方法相比,基于组和社会物理联系强度的功能将召回率(检测到的事件的百分比)提高了2倍以上(在SMU校园中达到0.77,在MRT样本站中达到0.73)。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号