【24h】

An Approach to Predict Multiple Cardiac Diseases

机译:一种预测多种心脏疾病的方法

获取原文

摘要

The First China ECG Intelligent Competition launched ECG challenge to classify 8 kinds of abnormalities from uneven 12-lead ECGs. These abnormalities can be classified into two categories according to morphology and rhythm, four in each group. In this paper, for morphology tasks neural network is applied mainly with input median wave extracted from raw data, while traditional methods are executed and promoted by machine learning to achieve rhythm classification. Non-coexistence relationship is taken into consideration to fit in clinical significance better. The final average Fl score is 0.886 on test set, which certificates these are effective methods for ECG auto detection.
机译:首届中国心电图智能大赛发起了心电图挑战赛,将来自不平衡12导联心电图的8种异常分类。根据形态和节律,这些异常可分为两类,每组四类。在形态任务中,神经网络主要用于从原始数据中提取输入中波,而传统方法则通过机器学习来执行和推广以实现节奏分类。考虑非共存关系以更好地符合临床意义。最终平均Fl分数在测试集上为0.886,这证明这些是ECG自动检测的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号