首页> 外文会议>International Workshop on Combinatorial Algorithms >Reaching 3-Connectivity via Edge-Edge Additions
【24h】

Reaching 3-Connectivity via Edge-Edge Additions

机译:通过边缘-边缘添加达到3连通性

获取原文

摘要

Given a graph G and a pair (e',e') of distinct edges of G, an edge-edge addition on (e',e') is an operation that turns G into a new graph G' by subdividing edges e' and e' with a dummy vertex v' and v', respectively, and by adding the edge (v',v'). In this paper, we show that any 2-connected simple planar graph with minimum degree δ(G) ≥ 3 and maximum degree Δ(G) can be augmented by means of edge-edge additions to a 3-connected planar graph G' with Δ(G') = Δ(G), where each edge of G participates in at most one edge-edge addition. This result is based on decomposing the input graph into its 3-connected components via SPQR-trees and on showing the existence of a planar embedding in which edge pairs from a special set share a common face. Our proof is constructive and yields a linear-time algorithm to compute the augmented graph. As a relevant application, we show how to exploit this augmentation technique to extend some classical NP-hardness results for bounded-degree 2-connected planar graphs to bounded-degree 3-connected planar graphs.
机译:给定图G和G的一对不同边缘对(e',e'),(e',e')上的边沿加法是通过细分边e'将G变成新图G'的操作和e'分别具有虚拟顶点v'和v',并通过添加边(v',v')。在本文中,我们表明,可以通过对3个连接的平面图G'进行边-边加法来增加最小度δ(G)≥3和最大度Δ(G)的任何2个连接的简单平面图。 Δ(G′)=Δ(G),其中G的每个边缘最多参与一个边缘-边缘相加。此结果基于通过SPQR树将输入图分解为其3个连接的分量,并显示了平面嵌入的存在,其中来自特殊集合的边对共享一个公共面。我们的证明是建设性的,并产生了线性时间算法来计算扩充图。作为相关应用,我们展示了如何利用这种扩充技术将有界2连接平面图的一些经典NP硬度结果扩展为有界3连接平面图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号