【24h】

Toward Marker less Image-Guided Radiotherapy Using Deep Learning for Prostate Cancer

机译:借助深度学习实现前列腺癌更少的影像引导放射治疗

获取原文

摘要

Current image-guided prostate radiotherapy often relies on the use of implanted fiducial markers (FMs) or transducers for target localization. Fiducial or transducer insertion requires an invasive procedure that adds cost and risks for bleeding, infection and discomfort to some patients. We are developing a novel markerless prostate localization strategy using a pre-trained deep learning model to interpret routine projection kV X-ray images without the need for daily cone-beam computed tomography (CBCT). A deep learning model was first trained by using one thousand annotated projection X-ray images. The trained model is capable of identifying the location of the prostate target for a given input X-ray projection image. To assess the accuracy of the approach, six patients with prostate cancer received volumetric modulated arc therapy (VMAT) were retrospectively studied. The results obtained by using the deep learning model and the actual position of the prostate were compared quantitatively. Differences between the predicted target positions using DNN and their actual positions are (mean ± standard deviation) 1.66 ± 0.41 mm, 1.63 ± 0.48 mm, and 1.64 ± 0.28 mm in anterior-posterior, lateral, and oblique directions, respectively. Target position provided by the deep learning model for the kV images acquired using OBI is found to be consistent that derived from the implanted FMs. This study demonstrates, for the first time, that highly accurate markerless prostate localization based on deep learning is achievable. The strategy provides a clinically valuable solution to daily patient positioning and real-time target tracking for image-guided radiotherapy (IGRT) and interventions.
机译:当前的图像引导的前列腺放射疗法通常依赖于使用植入的基准标记(FM)或换能器进行靶标定位。基准或换能器的插入需要侵入性手术,这增加了成本和某些患者出血,感染和不适的风险。我们正在开发一种新颖的无标记前列腺定位策略,该方法使用预先训练的深度学习模型来解释常规的投影kV X射线图像,而无需每日进行锥形束计算机断层扫描(CBCT)。首先使用一千个带注释的投影X射线图像来训练深度学习模型。训练后的模型能够为给定的输入X射线投影图像识别前列腺靶的位置。为了评估该方法的准确性,回顾性研究了六例接受容积调制弧光治疗(VMAT)的前列腺癌患者。使用深度学习模型获得的结果与前列腺的实际位置进行了定量比较。使用DNN预测的目标位置与其实际位置之间的差在前后,横向和倾斜方向分别为1.66±0.41 mm,1.63±0.48 mm和1.64±0.28 mm。深度学习模型为使用OBI采集的kV图像提供的目标位置被发现与植入的FM一致。这项研究首次证明了可以实现基于深度学习的高精度无标记前列腺定位。该策略为图像引导放射治疗(IGRT)和干预措施的日常患者定位和实时目标跟踪提供了具有临床价值的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号