首页> 外文会议>International Symposium on Mathematical and Computational Oncology >Phylogenies Derived from Matched Transcriptome Reveal the Evolution of Cell Populations and Temporal Order of Perturbed Pathways in Breast Cancer Brain Metastases
【24h】

Phylogenies Derived from Matched Transcriptome Reveal the Evolution of Cell Populations and Temporal Order of Perturbed Pathways in Breast Cancer Brain Metastases

机译:从相匹配的转录组衍生的系统发育揭示了乳腺癌脑转移中细胞种群的演变和扰动途径的时间顺序。

获取原文

摘要

Metastasis is the mechanism by which cancer results in mortality and there are currently no reliable treatment options once it occurs, making the metastatic process a critical target for new diagnostics and therapeutics. Treating metastasis before it appears is challenging, however, in part because metastases may be quite distinct genom-ically from the primary tumors from which they presumably emerged. Phylogenetic studies of cancer development have suggested that changes in tumor genomics over stages of progression often results from shifts in the abundance of clonal cellular populations, as late stages of progression may derive from or select for clonal populations rare in the primary tumor. The present study develops computational methods to infer clonal heterogeneity and temporal dynamics across progression stages via deconvolution and clonal phylogeny reconstruction of pathway-level expression signatures in order to reconstruct how these processes might influence average changes in genomic signatures over progression. We show, via application to a study of gene expression in a collection of matched breast primary tumor and metastatic samples, that the method can infer coarse-grained substructure and stromal infiltration across the metastatic transition. The results suggest that genomic changes observed in metastasis, such as gain of the ErbB signaling pathway, are likely caused by early events in clonal evolution followed by expansion of minor clonal populations in metastasis (Algorithmic details, parameter settings, and proofs are provided in an Appendix with source code available at https://github.com/CMUSchwartzLab/BrM-Phylo).
机译:转移是癌症导致死亡的机制,一旦发生,目前尚无可靠的治疗选择,这使转移过程成为新诊断和治疗方法的关键目标。然而,在转移灶出现之前对其进行治疗就具有挑战性,部分原因是,从基因组上讲,转移灶可能与原发肿瘤在基因组学上截然不同。癌症发展的系统发育研究表明,肿瘤基因组学在整个进展阶段的变化通常是由于克隆细胞群体的丰度变化而引起的,因为进展的后期阶段可能源自原发肿瘤中罕见的克隆群体或从中选择。本研究开发了计算方法,以通过反卷积和途径水平表达特征的克隆系统发育重建来推断整个进展阶段的克隆异质性和时间动态,以重构这些过程如何影响基因组特征在进展中的平均变化。通过应用在匹配的乳腺原发肿瘤和转移性样品的集合中的基因表达研究,我们表明该方法可以推断出转移转移过程中的粗粒亚结构和基质浸润。结果表明,在转移中观察到的基因组变化(例如ErbB信号通路的获得)可能是由克隆进化的早期事件引起的,然后是转移中较小的克隆群体的扩大(算法细节,参数设置和证明在带有源代码的附录位于https://github.com/CMUSchwartzLab/BrM-Phylo)。

著录项

  • 来源
  • 会议地点 Lake Tahoe(US)
  • 作者单位

    Computational Biology Department School of Computer Science Carnegie Mellon University Pittsburgh PA 15213 USA Joint Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology Pittsburgh PA 15213 USA;

    Department of Pharmacology and Chemical Biology UPMC Hillman Cancer Center Magee-Womens Research Institute University of Pittsburgh Pittsburgh PA 15213 USA;

    Computational Biology Department School of Computer Science Carnegie Mellon University Pittsburgh PA 15213 USA;

    Computational Biology Department School of Computer Science Carnegie Mellon University Pittsburgh PA 15213 USA Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    Breast cancer; Brain metastases; Phylogenetics; Deconvolution; Pathways; Gene modules;

    机译:乳腺癌;脑转移;系统发育学;去卷积途径;基因模块;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号