首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >Intelligent stock trading system based on SVM algorithm and oscillation box prediction
【24h】

Intelligent stock trading system based on SVM algorithm and oscillation box prediction

机译:基于SVM算法和振荡盒预测的智能股票交易系统。

获取原文

摘要

The stock market is considered as a high complex and dynamic system. Many machine learning and data mining technologies are used for stock analysis, but it still leaves an open question about how to integrate these methods with the plentiful knowledge and techniques accumulated in stock investment which are critical to the successful stock analysis. In this paper, we propose an intelligent stock trading system by combining support vector machine (SVM) algorithm and box theory of stock. The box theory believes a successful stock buying/selling generally occurs when the price effectively breaks out the original oscillation box into another new box. In the system, support vector machine algorithm is utilized to make forecasts of the top and bottom of the oscillation box. Then a trading strategy based on the box theory is constructed to make trading decisions. The different stock movement patterns, i.e. bull, bear and fluctuant market, are used to test the feasibility of the system. The experiments on S&P500 components show a promising performance is achieved.
机译:股市被认为是一个高度复杂和动态的系统。许多机器学习和数据挖掘技术用于股票分析,但是仍然存在一个悬而未决的问题,即如何将这些方法与股票投资中积累的丰富知识和技术相集成,这对于成功进行股票分析至关重要。本文结合支持向量机(SVM)算法和股票盒理论,提出了一种智能股票交易系统。盒子理论认为,当价格有效地将原始的振荡盒子分解为另一个新盒子时,通常会成功进行股票买卖。在系统中,利用支持向量机算法来预测振荡箱的顶部和底部。然后构造基于盒子理论的交易策略来做出交易决策。使用不同的股票走势模式,即牛市,熊市和波动市场,来测试该系统的可行性。在S&P500组件上进行的实验表明,可以实现令人鼓舞的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号