首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >A constrained backpropagation approach to solving Partial Differential Equations in non-stationary environments
【24h】

A constrained backpropagation approach to solving Partial Differential Equations in non-stationary environments

机译:在非平稳环境中求解偏微分方程的约束反向传播方法

获取原文

摘要

A constrained-backpropagation (CPROP) training technique is presented to solve partial differential equations (PDEs). The technique is based on constrained optimization and minimizes an error function subject to a set of equality constraints, provided by the boundary conditions of the differential problem. As a result, sigmoidal neural networks can be trained to approximate the solution of PDEs avoiding the discontinuity in the derivative of the solution, which may affect the stability of classical methods. Also, the memory provided to the network through the constrained approach may be used to solve PDEs on line when the forcing term changes over time, learning different solutions of the differential problem through a continuous nonlinear mapping. The effectiveness of this method is demonstrated by solving a nonlinear PDE on a circular domain. When the underlying process changes subject to the same boundary conditions, the CPROP network is capable of adapting online and approximate the new solution, while memory of the boundary conditions is maintained virtually intact at all times.
机译:提出了一种约束反向传播(CPROP)训练技术来求解偏微分方程(PDE)。该技术基于约束最优化,并且使微分函数的边界条件所提供的受一组等式约束的误差函数最小化。结果,可以训练出S型神经网络来近似PDE的解,从而避免解导数的不连续性(这可能会影响经典方法的稳定性)。同样,当强制项随时间变化时,通过约束方法提供给网络的内存可用于在线求解PDE,通过连续的非线性映射学习微分问题的不同解决方案。通过在圆域上求解非线性PDE证明了该方法的有效性。当基础流程在相同的边界条件下发生变化时,CPROP网络能够在线适应和逼近新的解决方案,而边界条件的存储几乎始终保持不变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号