首页> 外文会议>International Geoscience and Remote Sensing Symposium >Cloud-cover assessment: From spectral properties to spatial domain natural scene statistic
【24h】

Cloud-cover assessment: From spectral properties to spatial domain natural scene statistic

机译:云层评估:从光谱属性到空间域自然场景统计

获取原文

摘要

Cloud contamination is the most common defect leading to quality degradation in remote sensing images. Numerous cloud-cover assessment (CCA) methods have been developed in the literature. The traditional Landsat 7 CCA algorithm attempted to detect clouds by taking advantages of different spectral properties from five spectral bands. However, it suffers the weakness of omitting thin cirrus clouds and the requirement of thermal bands. In this paper, we derived an automated CCA (ACCA) model that measures statistical deviations in spatial domain between cloud and clear images. Moreover, it only conducts on panchromatic band image, which can successfully address the limitation of unavailable thermal bands for satellite missions without thermal infrared sensors on board. A database with 400 clear/cloud images is then built for performance testing. Experimental results on the database show that our approach is more consistent with ground truths than the latest Landsat 8 ACCA results.
机译:云污染是导致遥感影像质量下降的最常见缺陷。文献中已经开发了许多云覆盖评估(CCA)方法。传统的Landsat 7 CCA算法试图利用五个光谱带的不同光谱特性来检测云。然而,它具有省略薄卷云的缺点和对热带的要求。在本文中,我们导出了一个自动CCA(ACCA)模型,该模型可测量云和清晰图像之间在空间域中的统计偏差。而且,它仅在全色波段图像上进行,这可以成功解决没有卫星红外传感器的卫星任务无法使用的热波段的局限性。然后建立具有400张清晰/云图的数据库,以进行性能测试。数据库上的实验结果表明,与最新的Landsat 8 ACCA结果相比,我们的方法更符合地面事实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号