首页> 外文期刊>Image Processing, IEEE Transactions on >Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain
【24h】

Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain

机译:盲图像质量评估:DCT域中的自然场景统计方法

获取原文
获取原文并翻译 | 示例

摘要

We develop an efficient general-purpose blindo-reference image quality assessment (IQA) algorithm using a natural scene statistics (NSS) model of discrete cosine transform (DCT) coefficients. The algorithm is computationally appealing, given the availability of platforms optimized for DCT computation. The approach relies on a simple Bayesian inference model to predict image quality scores given certain extracted features. The features are based on an NSS model of the image DCT coefficients. The estimated parameters of the model are utilized to form features that are indicative of perceptual quality. These features are used in a simple Bayesian inference approach to predict quality scores. The resulting algorithm, which we name BLIINDS-II, requires minimal training and adopts a simple probabilistic model for score prediction. Given the extracted features from a test image, the quality score that maximizes the probability of the empirically determined inference model is chosen as the predicted quality score of that image. When tested on the LIVE IQA database, BLIINDS-II is shown to correlate highly with human judgments of quality, at a level that is competitive with the popular SSIM index.
机译:我们使用离散余弦变换(DCT)系数的自然场景统计(NSS)模型开发了一种有效的通用盲/无参考图像质量评估(IQA)算法。考虑到针对DCT计算进行了优化的平台的可用性,该算法在计算上具有吸引力。该方法依靠简单的贝叶斯推理模型来预测给定某些提取特征的图像质量得分。这些特征基于图像DCT系数的NSS模型。利用模型的估计参数来形成表示感知质量的特征。在简单的贝叶斯推理方法中使用这些功能来预测质量得分。由此产生的算法(我们称为BLIINDS-II)需要最少的培训,并采用简单的概率模型进行分数预测。给定从测试图像中提取的特征,将根据经验确定的推理模型的概率最大化的质量得分选择为该图像的预测质量得分。在LIVE IQA数据库上进行测试时,显示出BLIINDS-II与人类对质量的判断高度相关,其水平与流行的SSIM索引具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号