首页> 外文会议>International Congress on Image and Signal Processing;CISP 2012 >An improved algorithm with importance weight value based on super-resolution through neighbor embedding
【24h】

An improved algorithm with importance weight value based on super-resolution through neighbor embedding

机译:一种基于邻居嵌入的超分辨率的重要度权值改进算法

获取原文

摘要

Based on the research on super-resolution algorithm of neighbor embedding (SRNE), this paper proposes an improved algorithm, namely, super-resolution neighbor embedding with importance weight value (NEIWV) to improve the image resolution. As in dealing with special types of images, especially medical images, the images' color and texture features in the target region play important roles. However, the importance levels of these characteristics are different; we calculate the importance weight value and then embed the value into the SRNE. Each feature of all image patches is represented with a feature vector. Through selecting the feature vector, we restore the information from the high and low frequencies information of the image as much as possible. In this algorithm we choose the Gaussian intensity vector and first-order gradient vector. The experiment results show that the improved algorithm has a good effect in raising the image resolution and eliminating noise.
机译:在对邻居嵌入超分辨率算法(SRNE)进行研究的基础上,提出了一种改进的算法,即具有重要权重值的超分辨率邻居嵌入(NEIWV),以提高图像分辨率。与处理特殊类型的图像(尤其是医学图像)一样,目标区域中图像的颜色和纹理特征也起着重要作用。但是,这些特征的重要性级别不同。我们计算重要性权重值,然后将其嵌入SRNE。所有图像补丁的每个特征都用特征向量表示。通过选择特征向量,我们尽可能地从图像的高频和低频信息中恢复信息。在该算法中,我们选择高斯强度矢量和一阶梯度矢量。实验结果表明,改进算法在提高图像分辨率和消除噪声方面具有良好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号