首页> 外文期刊>Pattern recognition letters >Neighbor Embedding Based Super-resolution Algorithm Through Edge Detection And Feature Selection
【24h】

Neighbor Embedding Based Super-resolution Algorithm Through Edge Detection And Feature Selection

机译:边缘检测和特征选择的基于邻居嵌入的超分辨率算法

获取原文
获取原文并翻译 | 示例

摘要

Assuming that the local geometry of low-resolution image patches is similar to that of the high-resolution counterparts, neighbor embedding based super-resolution methods learn a high-resolution image from one or more low-resolution input images by embedding its patches optimally with training ones. However, their performance suffers from inappropriate choices of features, neighborhood sizes and training patches. To address the issues, we propose an extended Neighbor embedding based super-resolution through edge detection and Feature Selection (henceforth NeedFS). Three major contributions of NeedFS are: (1) A new combination of features are proposed, which preserve edges and smoothen color regions better; (2) the training patches are learned discriminately with different neighborhood sizes based on edge detection; (3) only those edge training patches are bootstrapped to provide extra useful information with least redundancy. Experiments show that NeedFS performs better in both quantitative and qualitative evaluation. NeedFS is also robust even with a very limited training set and thus is promising for real applications.
机译:假定低分辨率图像斑块的局部几何形状与高分辨率图像的局部几何形状相似,则基于邻居嵌入的超分辨率方法通过将一个或多个低分辨率输入图像的斑块最佳地嵌入,从而从一个或多个低分辨率输入图像中学习高分辨率图像。训练的。但是,它们的性能受到特征,邻域大小和训练补丁的不适当选择的困扰。为了解决这些问题,我们提出了一种通过边缘检测和特征选择(以下称为NeedFS)基于扩展的基于邻居嵌入的超分辨率。 NeedFS的三个主要贡献是:(1)提出了一种新的功能组合,可以更好地保留边缘并平滑色彩区域; (2)基于边缘检测有区别地学习不同邻域大小的训练补丁; (3)仅引导那些边缘训练补丁以提供最少冗余的额外有用信息。实验表明,NeedFS在定量和定性评估方面均表现更好。即使在训练集非常有限的情况下,NeedFS也很强大,因此对于实际应用很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号