首页> 外文期刊>Neurocomputing >Development of robust neighbor embedding based super-resolution scheme
【24h】

Development of robust neighbor embedding based super-resolution scheme

机译:基于鲁棒邻居嵌入的超分辨率方案的开发

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a robust neighbor embedding super-resolution (RNESR) scheme to generate a super-resolution (SR) image from a single low-resolution (LR) image. It utilizes histogram matching for selection of best training pair of images. This helps to learn co-occurrence prior to high-resolution (HR) image reconstruction. The global neighborhood size is computed from local neighborhood size, which avoids the over-fitting and under-fitting problem during neighbor embedding. Robust locally linear embedding (RLLE) is used in place of locally linear embedding (LLE) to generate HR image. To validate the scheme, exhaustive simulation has been carried out on standard images. Comparative analysis with respect to different measures like peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and feature similarity index (FSIM) reveals that the RNESR scheme generates high-quality SR image from a LR image as compared to existing schemes. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种鲁棒的邻居嵌入超分辨率(RNESR)方案,以从单个低分辨率(LR)图像生成超分辨率(SR)图像。它利用直方图匹配来选择最佳训练图像对。这有助于在高分辨率(HR)图像重建之前学习同现。全局邻域大小是根据本地邻域大小计算得出的,避免了邻居嵌入期间的过度拟合和拟合不足问题。使用稳健的局部线性嵌入(RLLE)代替局部线性嵌入(LLE)以生成HR图像。为了验证该方案,已经在标准图像上进行了详尽的仿真。对不同措施的比较分析,例如峰值信噪比(PSNR),结构相似性指标(SSIM)和特征相似性指标(FSIM),显示与比较相比,RNESR方案从LR图像生成高质量的SR图像现有的方案。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号