首页> 外文会议>International Conference on Systems, Man, and Cybernetics >Fuzzy restricted Boltzmann machine and deep belief network: A comparison on image reconstruction
【24h】

Fuzzy restricted Boltzmann machine and deep belief network: A comparison on image reconstruction

机译:模糊受限玻尔兹曼机与深度置信网络:图像重建的比较

获取原文

摘要

The fuzzy restricted Boltzmann machine (FRBM) is demonstrated to have better generative and discriminative capabilities than traditional RBM. We now further investigate and compare the generative ability of DBN with FRBM on image reconstruction. The DBN is pre-trained by stacking RBMs layer by layer and then fine-tuned by the wake-sleep algorithm. Then the FRBM, RBM and DBN are compared in detail under different conditions on the MNIST and Extended Yale B data sets. The experiment results again indicate that the FRBM outperforms RBM: it can achieve smaller average reconstruction errors (AREs) given the same number of hidden units and learning time. When compared to DBNs, the FRBM can achieve smaller AREs in less learning time than the two-layer DBN with equal hidden size. Moreover, when we increase the training epochs, the FRBM shows a better ARE and a slight increase of (or still less) learning time than corresponding two-layer and three-layer DBNs with double number of hidden units. Hence we make a preliminary conclusion that the FRBM with m hidden units possesses the close generative capability to DBN with 2m hidden units in reconstructing images.
机译:事实证明,模糊约束玻尔兹曼机(FRBM)具有比传统RBM更好的生成和判别能力。现在,我们进一步研究和比较DBN与FRBM的图像重建能力。 DBN通过逐层堆叠RBM进行预训练,然后通过唤醒睡眠算法进行微调。然后,在MNIST和扩展Yale B数据集的不同条件下,详细比较FRBM,RBM和DBN。实验结果再次表明,FRBM优于RBM:在相同数量的隐藏单元和学习时间的情况下,它可以实现较小的平均重构误差(ARE)。与DBN相比,与具有相同隐藏大小的两层DBN相比,FRBM可以在更短的学习时间内实现更小的ARE。此外,当我们增加训练时间时,FRBM显示出比相应的具有两倍隐藏单元数的两层和三层DBN更好的ARE,学习时间略有增加(或更少)。因此,我们得出一个初步的结论,即m个隐藏单元的FRBM与2m个隐藏单元的DBN具有相似的生成能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号