首页> 外文会议>International Conference on Robotics and Automation >Deep n-Shot Transfer Learning for Tactile Material Classification with a Flexible Pressure-Sensitive Skin
【24h】

Deep n-Shot Transfer Learning for Tactile Material Classification with a Flexible Pressure-Sensitive Skin

机译:深度n热转移学习,具有柔软的压力敏感皮肤,用于触觉材料分类

获取原文

摘要

n-shot learning, i.e., learning a classifier from only few or even one training samples per class, is the ultimate goal in minimizing the cost of sample acquisition. This is esp. important for active sensing tasks like tactile material classification. Achieving high classification accuracy from only few samples is typically possible only when pre-knowledge is used. In n-shot transfer learning, knowledge from pre-training on a large knowledge set with many classes and samples per class has to be transferred to support the training for a given task set with only few samples per new class. In this paper, we show for the first time that deep end-to-end transfer learning is feasible for tactile material classification. Based on the previously presented (TactNet-II) [1], a deep convolutional neural network (CNN) which reaches superhuman tactile classification performance, we adapt state-of-the art deep transfer learning methods. We evaluate the resulting deep n-shot learning methods with a publicly available tactile material data set with 36 materials [1] in a 6-way n-shot learning task with 30 materials in the knowledge set. In 1-shot learning, our deep transfer learning method reaches 75.5% classification accuracy and in 10-shot more than 90%, outperforming classification without knowledge transfer by more than 40%. This results in an up to 15 time reduction in the number of samples needed to reach a desired accuracy level. We also provide insights of the inner workings of the derived deep transfer learning methods.
机译:n次射击学习,即从每个班级仅几个甚至一个训练样本中学习分类器,是使样本获取成本最小化的最终目标。这是特别的。对于主动感测任务(如触觉材料分类)非常重要。通常只有在使用预知识的情况下,才可能仅从少数几个样本中获得较高的分类精度。在n-shot转移学习中,必须转移来自对具有很多类别和每个样本的样本的大型知识集进行预训练而获得的知识,以支持针对给定任务集的训练,而每个新类别只有很少的样本。在本文中,我们首次展示了深度端到端转移学习对于触觉材料分类是可行的。基于先前提出的(TactNet-II)[1]达到超人触觉分类性能的深度卷积神经网络(CNN),我们采用了最先进的深度转移学习方法。我们通过一个公开的触觉材料数据集(其中包含36种材料[1])来进行深度n射击学习方法的评估,该数据集是在知识集中包含30种材料的6向n射击学习任务中进行的。在1次学习中,我们的深度转移学习方法可达到75.5%的分类准确度,在10次学习中,分类准确率可达到90%以上,在不进行知识转移的情况下优于40%的分类。这样可将达到所需精度水平所需的样本数量最多减少15个时间。我们还提供了有关派生的深度转移学习方法的内部运作的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号