首页> 外文期刊>Biomedical signal processing and control >Assisted deep learning framework for multi-class skin lesion classification considering a binary classification support
【24h】

Assisted deep learning framework for multi-class skin lesion classification considering a binary classification support

机译:考虑二进制分类支持,协助多级皮肤病病变分类的深度学习框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a deep convolutional neural network framework to classify dermoscopy images into seven classes. With taking the advantage that these classes can be merged into two (healthy/diseased) ones we can train a part of the network regarding this binary task only. Then, the confidences regarding the binary classification are used to tune the multi-class confidence values provided by the other part of the network, since the binary task can be solved more accurately. For both the classification tasks we used GoogLeNet Inception-v3, however, any CNN architectures could be applied for these purposes. The whole network is trained in the usual way, and as our experimental results on the skin lesion image classification show, the accuracy of the multi-class problem has been remarkably raised (by 7% considering the balanced multi-class accuracy) via embedding the more reliable binary classification outcomes. (C) 2020 The Authors. Published by Elsevier Ltd.
机译:在本文中,我们提出了一个深度卷积神经网络框架,将Dermoscopy图像分类为七个类。随着这些课程可以合并为两个(健康/患病)的优势我们只能培训一部分关于该二进制任务的网络。然后,关于二进制分类的信心用于调整网络的另一部分提供的多级置信度值,因为可以更准确地解决二进制任务。对于我们使用的分类任务,我们使用Googlenet Inception-V3,可以应用任何CNN架构以用于这些目的。整个网络以通常的方式培训,并且随着我们对皮肤病变图像分类的实验结果,多级问题的准确性显着升高(通过嵌入均衡的多级精度来提高7%更可靠的二进制分类结果。 (c)2020作者。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号