首页> 外文期刊>Pattern recognition letters >A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system
【24h】

A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system

机译:基于转移学习,深度学习和IOT系统的分类皮肤病的新方法

获取原文
获取原文并翻译 | 示例

摘要

Melanoma skin cancer is one of the most common diseases in the world. It is essential to diagnose melanoma at an early stage. Visual inspection during the medical examination of skin lesions is not a simple task, as there is a similarity between lesions. Also, medical experience and disposition can result in inaccurate diagnoses. Technologies such as the Internet of Things (IoT) have helped to create effective health systems. Doctors can use them anywhere, with the guarantee that more people can be diagnosed without prejudice to subjective factors. Transfer Learning and Deep Learning are increasingly significant in the clinical diagnosis of different diseases. This work proposes the use of Transfer Learning and Deep Learning in an IoT system to assist doctors in the diagnosis of common skin lesions, typical nevi, and melanoma. This work uses Convolutional Neural Networks (CNNs) as resource extractors. The CNN models used were: Visual Geometry Group (VGG), Inception, Residual Networks (ResNet), Inception-ResNet, Extreme Inception (Xception), MobileNet, Dense Convolutional Network (DenseNet), and Neural Architecture Search Network (NASNet). For the classification of injuries, the Bayes, Support Vector Machines (SVM), Random Forest (RF), Perceptron Multilayer (MLP), and the K-Nearest Neighbors (KNN) classifiers are used. This study used two datasets: the first provided by the International Skin Imaging Collaboration (ISIC) at the International Biomedical Imaging Symposium (ISBI); the second is PH2. For ISBI-1SIC, this study examined lesions between nevi and melanomas. In PH2, this work analyzed the diagnosis based on lesions of common nevus, atypical nevi, and melanomas. The DenseNet201 extraction model, combined with the KNN classifier achieved an accuracy of 96.805% for the ISBI-ISIC dataset and 93.167% for the PH2. Thus, an approach focused on the IoT system is reliable and efficient for doctors who assist in the diagnosis of skin lesions.
机译:黑色素瘤皮肤癌是世界上最常见的疾病之一。在早期诊断黑色素瘤至关重要。在体检期间的目视检查皮肤病变不是一个简单的任务,因为病变之间存在相似性。此外,医学经验和处置可能导致诊断不准确。诸如事物互联网(物联网)等技术有助于创建有效的健康系统。医生可以在任何地方使用它们,保证可以在不损害主观因素的情况下诊断出来的担保。转移学习和深度学习在不同疾病的临床诊断中越来越重要。这项工作提出了在物联网系统中使用转移学习和深度学习,协助医生诊断常见的皮肤病变,典型的痣和黑色素瘤。这项工作使用卷积神经网络(CNNS)作为资源提取器。所使用的CNN模型是:视觉几何组(VGG),成立,剩余网络(Reset),Inception-Reset,Extreme Inception(Xception),MobileNet,密集卷积网络(Densenet)和神经结构搜索网络(NASNet)。对于损伤的分类,使用贝叶斯,支持向量机(SVM),随机森林(RF),Perceptron多层(MLP)和K最近邻居(KNN)分类器。这项研究使用了两个数据集:第一个由国际生物医学成像研讨会(ISBI)的国际皮肤成像协作(ISIC)提供;第二个是pH2。对于ISBI-1SIC,该研究检查了内部和黑色素之间的病变。在PH2中,这项工作分析了基于常见痣,非典型内病和黑色素瘤的病变的诊断。与KNN分类器相结合的DENSENET201提取模型为ISBI-ISIC数据集实现了96.805%的精度,PH2的93.167%。因此,专注于物联网系统的方法是可靠且有效的医生,他们有助于诊断皮肤病变。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第8期|8-15|共8页
  • 作者单位

    Programa de Pos-Graduacao em Engenharia de Teleinformdtica Universidade Federal do Ceara Fortaleza CE Brazil Laboratorio de Processamento de Imagens Sinais e Computacao Aplicada (LAPISCO) Institute Federal de Educacao Ciencia e Tecnologia do Ceara Fortaleza CE Brazil;

    Programa de Pos-Graduacao em Engenharia de Teleinformdtica Universidade Federal do Ceara Fortaleza CE Brazil Laboratorio de Processamento de Imagens Sinais e Computacao Aplicada (LAPISCO) Institute Federal de Educacao Ciencia e Tecnologia do Ceara Fortaleza CE Brazil;

    Department of CSE KUT Deemed to be University Odisha India;

    School of Architecture Building and Civil Engineering Loughborough University Loughborough;

    Department of Electronics and Communication Engineering Karunya University India;

    Programa de Pos-Graduacao em Engenharia de Teleinformdtica Universidade Federal do Ceara Fortaleza CE Brazil Laboratorio de Processamento de Imagens Sinais e Computacao Aplicada (LAPISCO) Institute Federal de Educacao Ciencia e Tecnologia do Ceara Fortaleza CE Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Skin lesion; Transfer learning; CNN; Internet of things;

    机译:皮肤病变;转移学习;CNN;物联网;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号