首页> 外文会议>International Conference on Robotics and Automation >Integrated Mapping and Path Planning for Very Large-Scale Robotic (VLSR) Systems
【24h】

Integrated Mapping and Path Planning for Very Large-Scale Robotic (VLSR) Systems

机译:大型机器人(VLSR)系统的集成映射和路径规划

获取原文

摘要

This paper develops a decentralized approach for mapping and information-driven path planning for Very Large Scale Robotic (VLSR) systems. In this approach, obstacle mapping is performed using a continuous probabilistic representation known as a Hilbert map, which formulates the mapping problem as a binary classification task and uses kernel logistic regression to train a discriminative classifier online. A novel Hilbert map fusion method is presented that quickly and efficiently combines the information from individual robot maps. An integrated mapping and path planning algorithm is presented to determine paths of maximum information value, while simultaneously performing obstacle avoidance. Furthermore, the effect of how percentage communication failure effects the overall performance of the system is investigated. The approach is demonstrated on a VLSR system with hundreds of robots that must map obstacles collaboratively over a large region of interest using onboard range sensors and no prior obstacle information. The results show that, through fusion and decentralized processing, the entropy of the map decreases over time and robot paths remain collision-free.
机译:本文为超大型机器人(VLSR)系统开发了一种用于地图绘制和信息驱动路径规划的分散方法。在这种方法中,使用称为希尔伯特图的连续概率表示来执行障碍物映射,希尔伯特图将映射问题公式化为二进制分类任务,并使用核逻辑回归来在线训练判别式分类器。提出了一种新颖的希尔伯特地图融合方法,该方法可以快速有效地组合各个机器人地图中的信息。提出了一种集成的映射和路径规划算法,以确定最大信息值的路径,同时执行避障。此外,研究了百分比的通信故障如何影响系统整体性能的影响。该方法在具有数百个机器人的VLSR系统上得到了证明,这些机器人必须使用机载距离传感器且没有事先的障碍物信息在较大的目标区域上协同绘制障碍物。结果表明,通过融合和分散处理,地图的熵随时间降低,并且机器人路径保持无碰撞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号