首页> 外文会议>International Conference on Robotics and Automation >Mechanical Search: Multi-Step Retrieval of a Target Object Occluded by Clutter
【24h】

Mechanical Search: Multi-Step Retrieval of a Target Object Occluded by Clutter

机译:机械搜索:杂波遮挡的目标对象的多步检索

获取原文

摘要

When operating in unstructured environments such as warehouses, homes, and retail centers, robots are frequently required to interactively search for and retrieve specific objects from cluttered bins, shelves, or tables. Mechanical Search describes the class of tasks where the goal is to locate and extract a known target object. In this paper, we formalize Mechanical Search and study a version where distractor objects are heaped over the target object in a bin. The robot uses an RGBD perception system and control policies to iteratively select, parameterize, and perform one of 3 actions - push, suction, grasp - until the target object is extracted, or either a time limit is exceeded, or no high confidence push or grasp is available. We present a study of 5 algorithmic policies for mechanical search, with 15,000 simulated trials and 300 physical trials for heaps ranging from 10 to 20 objects. Results suggest that success can be achieved in this long-horizon task with algorithmic policies in over 95% of instances and that the number of actions required scales approximately linearly with the size of the heap. Code and supplementary material can be found at http://ai.stanford.edu/mech-search.
机译:当在仓库,房屋和零售中心等非结构化环境中运行时,经常需要机器人从混乱的垃圾箱,架子或桌子上交互式地搜索和检索特定对象。机械搜索描述了目标是查找和提取已知目标对象的任务类别。在本文中,我们对“机械搜索”进行了形式化研究,并研究了将干扰对象堆叠在目标容器中的目标上的版本。机器人使用RGBD感知系统和控制策略来反复选择,参数化并执行以下三种动作之一:推,吸,抓握-直到提取出目标对象,或者超过了时间限制,或者没有高置信度推入或有把握。我们介绍了针对机械搜索的5种算法的研究,针对范围从10到20个对象的堆,进行了15,000次模拟试验和300次物理试验。结果表明,在超过95%的实例中使用算法策略可以在此长期任务中获得成功,并且所需的操作数与堆的大小大致成线性比例。可以在http://ai.stanford.edu/mech-search上找到代码和补充材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号