首页> 外文会议>International Conference on Parallel, Distributed and Grid Computing >Predictive Data Modeling: Educational Data Classification and Comparative Analysis of Classifiers Using Python
【24h】

Predictive Data Modeling: Educational Data Classification and Comparative Analysis of Classifiers Using Python

机译:预测数据建模:教育数据分类和使用Python的分类器比较分析

获取原文

摘要

Due to an increase in the number of data sources and digital community, there is a huge amount of unstructured data at almost every synergy and in such outline, data mining becomes an important field of Machine Learning. Machine learning can be used for data mining following its two approaches i.e. Supervised learning and Unsupervised learning to find out meaningful information from huge accumulated unstructured data. To increase the quality of education and to find a solution to problems soaring from the complicated educational dataset and contentious environment among the academic institutions, educational data mining is receiving great attention. Educational data mining helps in facilitation and utilization of resources related to student performance, predicting placement results and finding new educational trends. In this paper, classification of student's data in terms of internal assessment given by faculty members and visualization of an educational dataset using Python following multiple Data based classification prediction models and comparative results of classifier models are performed. The classifier models using python which can transform learning are compared and the model having best accuracy measure is considered for predictive analytics and classification of the overall performance of class.
机译:由于数据源和数字社区的数量增加,几乎每个协同作用都存在大量非结构化数据,因此,数据挖掘已成为机器学习的重要领域。机器学习可以遵循以下两种方法用于数据挖掘,即有监督学习和无监督学习,以从大量累积的非结构化数据中找出有意义的信息。为了提高教育质量,并解决学术机构中复杂的教育数据集和有争议的环境所引发的问题,教育数据挖掘受到了广泛关注。教育数据挖掘有助于促进和利用与学生表现相关的资源,预测实习结果并发现新的教育趋势。在本文中,根据教师的内部评估对学生的数据进行分类,并使用Python基于多个基于数据的分类预测模型和分类器模型的比较结果对教育数据集进行可视化。比较了可转换学习的使用python的分类器模型,并考虑了具有最佳准确性度量的模型,以进行预测性分析和类整体性能的分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号