首页> 外文会议>International Conference on Learning and Intelligent Optimization >Portfolio Optimization via a Surrogate Risk Measure: Conditional Desirability Value at Risk (CDVaR)
【24h】

Portfolio Optimization via a Surrogate Risk Measure: Conditional Desirability Value at Risk (CDVaR)

机译:通过替代风险衡量优化投资组合:有条件的期望风险值(CDVaR)

获取原文

摘要

A risk measure that specifies minimum capital requirements is the amount of cash that must be added to a portfolio to make its risk acceptable to regulators. The 2008 financial crisis highlighted the demise of the most widely used risk measure, Value-at-Risk. Unlike the Conditional VaR model of Rockafellar & Uryasev, VaR ignores the possibility of abnormal returns and is not even a coherent risk measure as defined by Pflug. Both VaR and CVaR portfolio optimizers use asset-price return histories. Our novelty here is introducing an annual Desirability Value (DV) for a company and using the annual differences of DVs in CVaR optimization, instead of simply utilizing annual stock-price returns. The DV of a company is the perpendicular distance from the fundamental position of that company to the best separating hyper-plane Ho that separates profitable companies from losers during training. Thus, we introduce both a novel coherent surrogate risk measure, Conditional-Desirability-Value-at-Risk (CDVaR) and a direction along which to reduce (downside) surrogate risk, the perpendicular to Ho- Since it is a surrogate measure, CDVaR optimization does not produce a cash amount as the risk measure. However, the associated CVaR (or VaR) is trivially computable. Our machine-learning-fundamental-analysis-based CDVaR portfolio optimization results are comparable to those of mainstream price-returns-based CVaR optimizers.
机译:指定最低资本要求的风险度量是必须添加到投资组合中以使监管机构可以接受的现金量。 2008年的金融危机突显了最广泛使用的风险衡量标准“风险价值”的消失。与Rockafellar&Uryasev的条件VaR模型不同,VaR忽略了异常收益的可能性,甚至不是Pflug定义的连贯风险度量。 VaR和CVaR投资组合优化器均使用资产价格回报历史记录。我们在这里的新颖之处在于为公司引入年度期望值(DV),并在CVaR优化中使用DV的年度差异,而不是简单地利用年度股票价格收益。公司的DV是从公司的基本位置到最佳分离超平面Ho的垂直距离,后者在训练过程中将获利的公司与失败者区分开。因此,我们介绍了一种新颖的相干替代风险度量,即条件期望值风险值(CDVaR)和降低(下行)替代风险的方向(垂直于Ho),因为它是替代度量CDVaR优化不会产生现金量作为风险度量。但是,相关的CVaR(或VaR)是微不足道的。我们基于机器学习基础分析的CDVaR投资组合优化结果与主流基于价格回报的CVaR优化器的结果相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号