首页> 外文会议>International Conference on Innovations in Science, Engineering and Technology >Supporting the Treatment of Mental Diseases using Data Mining
【24h】

Supporting the Treatment of Mental Diseases using Data Mining

机译:使用数据挖掘支持精神疾病的治疗

获取原文

摘要

Mental disorders are a rising phenomenon in Bangladesh. This phenomenon has contributed to intensive psychological healthcare data. It may change into helpful information via data mining application. In Bangladesh, healthcare data is underutilized. There are fifteen million individuals enduring from mental diseases of the many sorts in our country. Particularly, nearly 10 percent of the people seriously required mental health services. Early treatment of mental state issues helps the psychiatrist to treat it as a primary stage. For various mental problem symptoms are similar which makes diagnoses very complex task to recognize and sometimes doctors misjudged the disease. The objective of this research is to examine a classification algorithm to predict mental disorder. In this study, we analyze 466 mental health patients dataset to find the relation between diagnosis and attributes. We applied three machine-learning techniques: Random forest, SVM, K-nearest neighbor and compared performances of the above algorithms using various measures of accuracy to detect mental health problems. Experimental results show that Random forest shows a superior performance than the other algorithms we applied.
机译:精神疾病在孟加拉国正在上升。这种现象促成了密集的心理保健数据。通过数据挖掘应用程序,它可能会变成有用的信息。在孟加拉国,医疗保健数据未被充分利用。在我国,有一千五百万人患有各种精神疾病。特别是,近10%的人严重需要精神卫生服务。精神状态问题的早期治疗有助于精神科医生将其视为主要阶段。对于各种精神问题,症状是相似的,这使得诊断非常难以识别,有时医生会误判这种疾病。这项研究的目的是研究一种预测精神障碍的分类算法。在这项研究中,我们分析了466名心理健康患者的数据集,以发现诊断和属性之间的关系。我们应用了三种机器学习技术:随机森林,SVM,K近邻,并使用各种准确性度量来比较上述算法的性能,以检测心理健康问题。实验结果表明,随机森林显示出比我们应用的其他算法更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号