首页> 外文会议>International Conference on Information Reuse and Integration for Data Science >A Framework for Airfare Price Prediction: A Machine Learning Approach
【24h】

A Framework for Airfare Price Prediction: A Machine Learning Approach

机译:机票价格预测框架:一种机器学习方法

获取原文

摘要

The price of an airline ticket is affected by a number of factors, such as flight distance, purchasing time, fuel price, etc. Each carrier has its own proprietary rules and algorithms to set the price accordingly. Recent advance in Artificial Intelligence (AI) and Machine Learning (ML) makes it possible to infer such rules and model the price variation. This paper proposes a novel application based on two public data sources in the domain of air transportation: the Airline Origin and Destination Survey (DB1B) and the Air Carrier Statistics database (T-100). The proposed framework combines the two databases, together with macroeconomic data, and uses machine learning algorithms to model the quarterly average ticket price based on different origin and destination pairs, as known as the market segment. The framework achieves a high prediction accuracy with 0.869 adjusted R squared score on the testing dataset.
机译:机票的价格受许多因素影响,例如飞行距离,购买时间,燃油价格等。每个承运商都有自己的专有规则和算法来相应地设置价格。人工智能(AI)和机器学习(ML)的最新发展使得可以推断出此类规则并为价格变化建模。本文基于航空运输领域的两个公共数据源提出了一种新颖的应用:航空公司始发地和目的地调查(DB1B)和航空承运人统计数据库(T-100)。拟议的框架将两个数据库与宏观经济数据结合在一起,并使用机器学习算法基于不同的始发地和目的地对(称为细分市场)对季度平均机票价格进行建模。该框架在测试数据集上具有0.869调整后的R平方得分,可实现较高的预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号