首页> 外文期刊>Expert systems with applications >Customer purchase prediction from the perspective of imbalanced data: A machine learning framework based on factorization machine
【24h】

Customer purchase prediction from the perspective of imbalanced data: A machine learning framework based on factorization machine

机译:客户购买预测从不平衡数据的角度:基于分解机的机器学习框架

获取原文
获取原文并翻译 | 示例

摘要

Customer purchase prediction aims to predict customers? future purchases, and the prediction results are of great importance for conducting future commercial activities. To obtain accurate predictions of customer purchases, this paper develops a machine learning framework based on historical behavioural data. First, considering the sparsity of behavioural data, this paper proposes a feature combination method based on the improved factorization machine algorithm. Second, due to the imbalance of customer purchase data, this paper proposes an imbalanced prediction method based on the maximized marginal category and cost-sensitive ensemble learning. Finally, a real-word travel service purchase dataset is adopted to test the feasibility of the proposed prediction framework. The experimental results and comparative analysis verify the validity of the proposed model.
机译:客户购买预测旨在预测客户? 未来的购买,并且预测结果对于进行未来的商业活动非常重要。 为了准确预测客户购买,本文通过历史行为数据开发机器学习框架。 首先,考虑行为数据的稀疏性,本文提出了一种基于改进的分解机算法的特征组合方法。 其次,由于客户采购数据的不平衡,本文提出了一种基于最大化边际类别和成本敏感的集合学习的不平衡预测方法。 最后,采用了实际旅行服务购买数据集来测试所提出的预测框架的可行性。 实验结果和比较分析验证了拟议模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号