首页> 外文会议>International Conference on Human-Omputer Interaction;International Conference on Cross-Cultural Design >Design of an Online Education Evaluation System Based on Multimodal Data of Learners
【24h】

Design of an Online Education Evaluation System Based on Multimodal Data of Learners

机译:基于学习者多模态数据的在线教育评估系统设计

获取原文

摘要

Online education breaks the time and space constraints of learning, but it also presents some new challenges for the teachers: less interaction between instructors and learners, and loss of real-time feedback of teaching effects. Our study aims to fill these gaps by designing a tool for instructors that shows how learners' status change along the lecture video timeline. The study uses multimodal data consist of facial expressions and timeline-anchored comments and labels the data with two learning status dimensions (difficulty and interestingness). To acquire training dataset, 20 teaching video clips are selected, and 15 volunteers are invited to watch the videos to collect their facial expressions and subjective learning status ratings. Then we build a fusion model with results from a CNN (Convolutional Neural Network) model and a LSTM (Long Short-Term Memory) model, and design an effective interface to present feedbacks from the mode). After evaluation of the model, we put forward some possible improvements and future prospects for this design.
机译:在线教育打破了学习的时间和空间限制,但同时也给教师带来了一些新的挑战:教师与学习者之间的互动减少以及对教学效果的实时反馈丧失。我们的研究旨在通过设计一种用于教师的工具来填补这些空白,该工具可以显示学习者的状态如何沿讲授视频时间轴变化。该研究使用由面部表情和时间轴锚定注释组成的多模式数据,并使用两个学习状态维度(困难和有趣)标记数据。为了获取培训数据集,选择了20个教学视频片段,并邀请15名志愿者观看视频以收集他们的面部表情和主观学习状态评分。然后,我们使用CNN(卷积神经网络)模型和LSTM(长短期记忆)模型的结果构建融合模型,并设计一个有效的接口来呈现来自该模式的反馈。在对模型进行评估之后,我们为该设计提出了一些可能的改进和未来前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号