首页> 外文会议>International Conference on Computer Vision >Delving Into Robust Object Detection From Unmanned Aerial Vehicles: A Deep Nuisance Disentanglement Approach
【24h】

Delving Into Robust Object Detection From Unmanned Aerial Vehicles: A Deep Nuisance Disentanglement Approach

机译:深入研究无人飞行器的稳健目标检测:深层纠缠方法

获取原文

摘要

Object detection from images captured by Unmanned Aerial Vehicles (UAVs) is becoming increasingly useful. Despite the great success of the generic object detection methods trained on ground-to-ground images, a huge performance drop is observed when they are directly applied to images captured by UAVs. The unsatisfactory performance is owing to many UAV-specific nuisances, such as varying flying altitudes, adverse weather conditions, dynamically changing viewing angles, etc. Those nuisances constitute a large number of fine-grained domains, across which the detection model has to stay robust. Fortunately, UAVs will record meta-data that depict those varying attributes, which are either freely available along with the UAV images, or can be easily obtained. We propose to utilize those free meta-data in conjunction with associated UAV images to learn domain-robust features via an adversarial training framework dubbed Nuisance Disentangled Feature Transform (NDFT), for the specific challenging problem of object detection in UAV images, achieving a substantial gain in robustness to those nuisances. We demonstrate the effectiveness of our proposed algorithm, by showing state-of-the- art performance (single model) on two existing UAV-based object detection benchmarks. The code is available at https://github.com/TAMU-VITA/UAV-NDFT.
机译:从无人飞行器(UAV)捕获的图像进行目标检测变得越来越有用。尽管在地对地图像上训练的通用对象检测方法取得了巨大的成功,但当将它们直接应用于无人机捕获的图像时,却会观察到巨大的性能下降。由于许多无人机特有的干扰(例如变化的飞行高度,不利的天气条件,动态变化的视角等),性能无法令人满意。这些干扰构成了许多细粒度的域,检测模型必须在这些域上保持鲁棒性。幸运的是,无人机将记录描述这些不同属性的元数据,这些元数据可以与无人机图像一起免费获得,也可以轻松获得。我们建议将这些免费的元数据与相关联的无人机图像结合使用,通过称为“讨厌的纠缠特征变换”(NDFT)的对抗训练框架来学习领域鲁棒性,以解决无人机图像中目标检测的特定挑战性问题,从而实现增强对这些麻烦的鲁棒性。通过在两个基于UAV的现有目标检测基准上显示最新性能(单个模型),我们证明了我们提出的算法的有效性。该代码位于https://github.com/TAMU-VITA/UAV-NDFT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号