首页> 外文会议>International Conference on Computer Science Education >Training restricted Boltzmann Machine with dynamic learning rate
【24h】

Training restricted Boltzmann Machine with dynamic learning rate

机译:以动态学习率训练受限的Boltzmann机器

获取原文

摘要

Restricted Boltzmann Machine (RBM) has been successfully applied to many different machine learning and pattern recognition problems. Usually, fixed learning rate (FLR) is used for training RBM. However, the reconstruction error (RCERR) with FLR may not be declined each iteration, which will result in a slow convergence speed. In this paper, we propose a method to dynamically choose the learning rate by reducing RCERR properly. The experiments on MNIST database and Caltech 101 Silhouettes database show the RBMs trained with dynamic learning rate (DLR) are better than that trained with FLR in classification accuracy and stability. It indicates DLR may be more suitable for training RBM.
机译:受限玻尔兹曼机(RBM)已成功应用于许多不同的机器学习和模式识别问题。通常,固定学习率(FLR)用于训练RBM。但是,具有FLR的重构误差(RCERR)可能不会在每次迭代时都减小,这将导致收敛速度变慢。在本文中,我们提出了一种通过适当降低RCERR来动态选择学习率的方法。在MNIST数据库和Caltech 101 Silhouettes数据库上进行的实验表明,采用动态学习率(DLR)训练的RBM在分类准确性和稳定性方面要优于使用FLR训练的RBM。这表明DLR可能更适合训练RBM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号