首页> 外文会议>International Conference on Computer Engineering and Technology;ICCET 2010 >New Method for Impulse Noise Reduction from Digital Images Based on Adaptive Neuro-Fuzzy System and Fuzzy Wavelet Shrinkage
【24h】

New Method for Impulse Noise Reduction from Digital Images Based on Adaptive Neuro-Fuzzy System and Fuzzy Wavelet Shrinkage

机译:基于自适应神经模糊系统和模糊小波收缩的数字图像脉冲降噪新方法

获取原文

摘要

Impulse noise reduction is one of the important processes in the pre-processing of digital images. Most primitive approaches used neighbour pixel values to replacement of noisy pixels. But these methods affected on the all pixels including corrupted noisy pixels and uncorrupted noisy pixels. So the images loosed vital texture such as edges. Recently researchers have been proposed classification based methods,in this case at the first detect noisy pixels then replace only noisy pixels with new value,un-noisy pixels and detected normal texture remain unchanged. This paper proposed novel method,containing two stages,which in the first stage,Noisy pixels detect based on an Adaptive Neuro-Fuzzy Inference System (ANFIS),then in the final stage,the new changes apply on these pixels using the Fuzzy Wavelet Shrinkage (FWS). To illustrate the proposed method,some experiments have been performed on several standard gray level test images,also based quantitative and qualitative criteria were compared with popular methods. The results show that the proposed method relatively has the desirable performance.
机译:减少脉冲噪声是数字图像预处理中的重要过程之一。大多数原始方法都使用邻居像素值替换有噪像素。但是这些方法会影响所有像素,包括损坏的噪点像素和未损坏的噪点像素。因此,图像失去了重要的纹理,例如边缘。最近,研究人员提出了一种基于分类的方法,在这种情况下,首先检测噪点像素,然后仅用新值替换噪点像素,无噪像素和检测到的正常纹理保持不变。本文提出了一种新方法,包括两个阶段,第一阶段是基于自适应神经模糊推理系统(ANFIS)的噪声像素检测,然后在最后阶段,采用模糊小波收缩将新的变化应用于这些像素。 (FWS)。为了说明该方法,对几种标准灰度测试图像进​​行了一些实验,并将基于定量和定性标准的方法与常用方法进行了比较。结果表明,该方法具有较好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号