【24h】

Linking Biological Databases Semantically for Knowledge Discovery

机译:语义链接生物数据库以进行知识发现

获取原文

摘要

b'Many important life sciences questions are aimed at studying the relationships and interactions between biological functions/processes and biological entities such as genes. The answers may be found by examining diverse types of biological/genomic databases. Finding these answers, however, requires accessing, and retrieving data, from diverse biological data sources. More importantly, sophisticated knowledge discovery processes involve traversing through large numbers of inherent links among various data sources. Currently, the links among data are either implemented as hyperlinks without explicitly indicating their meanings and labels, or hidden in a seemingly simple text format. Consequently, biologists spend numerous hours identifying potentially useful links and following each lead manually, which is time-consuming and error-prone. Our research is aimed at constructing semantic relationships among all biological entities. We have designed a semantic model to categorize and formally define the links. By incorporating ontologies such as Gene or Sequence ontology, we propose techniques to analyze the links embedded within and among data records, to explicitly label their semantics, and to facilitate link traversal, querying, and data sharing. Users may then ask complicated and ad hoc questions and even design their own workflow to support their knowledge discovery processes. In addition, we have performed an empirical analysis to demonstrate that our method can not only improve the efficiency of querying multiple databases, but also yield more useful information.'
机译:b' 许多重要的生命科学问题旨在研究生物学功能/过程与生物学实体(例如基因)之间的关系和相互作用。可以通过检查各种类型的生物学/基因组数据库找到答案。但是,要找到这些答案,就需要从各种生物数据源访问和检索数据。更重要的是,复杂的知识发现过程涉及遍历各种数据源之间的大量固有链接。当前,数据之间的链接要么被实现为超链接而没有明确指出其含义和标签,要么被隐藏为看似简单的文本格式。因此,生物学家花费大量时间来确定潜在有用的链接并手动跟踪每条线索,这既耗时又容易出错。我们的研究旨在构建所有生物实体之间的语义关系。我们设计了一个语义模型来对链接进行分类和正式定义。通过合并诸如基因或序列本体之类的本体,我们提出了一种技术来分析嵌入在数据记录之内和之中的链接,以明确标记其语义,并促进链接遍历,查询和数据共享。然后,用户可能会提出复杂而特殊的问题,甚至设计自己的工作流程来支持他们的知识发现过程。此外,我们进行了一项实证分析,以证明我们的方法不仅可以提高查询多个数据库的效率,而且可以产生更多有用的信息。 '

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号