首页> 外文会议>International Conference on Big Data;Services Conference Federation >User Level Multi-feed Weighted Topic Embeddings for Studying Network Interaction in Twitter
【24h】

User Level Multi-feed Weighted Topic Embeddings for Studying Network Interaction in Twitter

机译:用于研究Twitter中网络交互的用户级多页进纸加权主题嵌入

获取原文

摘要

Over half a billion tweets on a wide range of topics are posted daily by hundreds of millions of Twitter users. Insights of user behavior and network interactions can be applied to practical applications like targeted advertising, viral marketing, political campaigns, etc. In this paper, we propose a Multi-Feed Weighted Topic Embeddings (MFWTE) model to study user network interaction and topic diffusion patterns on Twitter. Our method extracts topic embeddings from multiple views of a Twitter user feed and weights them according to their content authoring roles, where the authored tweets, replied tweets, retweeted tweets, and favor-ited tweets are the views we separate for constructing the embeddings. We test the proposed method using two different topic modeling algorithms: (ⅰ) Latent Dirichlet Allocation (ⅱ) Twitter-Latent Dirichlet Allocation. The users in our study are divided into multiple hierarchies based on their activity composition regarding individual topics, and the effectiveness of MFWTE is evaluated in the multi-hierarchical setting. The performance of our method on friendship recommendation and retweet behavior prediction task is evaluated using various ranked retrieval measures. The results indicate that our MFWTE method for topic modeling of Twitter users improves over various previous baselines. We conclude our work by applying the proposed model, MFWTE to discover various information diffusion patterns on Twitter.
机译:数亿推特用户每天发布超过十亿条有关广泛主题的推文。用户行为和网络交互的见解可应用于诸如定向广告,病毒式营销,政治运动等实际应用。在本文中,我们提出了一种多馈入加权主题嵌入(MFWTE)模型来研究用户网络交互和主题扩散Twitter上的模式。我们的方法从Twitter用户feed的多个视图中提取主题嵌入,并根据其内容创作角色对其进行加权,其中创作的tweet,已回复的tweet,转发的tweet和收藏夹的tweet是我们用于构造嵌入的独立视图。我们使用两种不同的主题建模算法测试提出的方法:(ⅰ)潜在狄利克雷分配(ⅱ)Twitter潜在狄利克雷分配。根据他们在各个主题上的活动组成,我们研究中的用户分为多个层次,并且在多层次环境中评估MFWTE的有效性。我们使用各种排名检索方法来评估我们的方法在友谊推荐和转发行为预测任务上的性能。结果表明,我们的Twitter用户主题建模MFWTE方法比以前的各种基准都有所改进。我们通过应用提议的模型MFWTE来结束我们的工作,以发现Twitter上的各种信息传播模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号