首页> 外文会议>International Conference on Artificial Intelligence in Education >Using Machine Learning to Overcome the Expert Blind Spot for Perceptual Fluency Trainings
【24h】

Using Machine Learning to Overcome the Expert Blind Spot for Perceptual Fluency Trainings

机译:使用机器学习克服专家盲点的感知能力训练

获取原文

摘要

Most STEM domains use multiple visual representations to illustrate complex concepts. While much research has focused on helping students make sense of visuals, students also have to become perceptually fluent at translating among visuals fast and effortlessly. Because perceptual fluency is acquired via implicit, nonverbal processes, perceptual fluency trainings provide simple classification tasks that vary visual features across numerous examples. Prior research shows that learning from such trainings is strongly affected by the sequence of the examples. Further, prior research shows that perceptual fluency trainings are most effective for high-performing students but may confuse low-performing students. We propose that a lack of benefits for low-performing students may result from a perceptual expert blind spot of instructors who typically develop perceptual fluency trainings: expert instructors may be unable to anticipate the needs of students who do not see meaningful information in the visuals. In prior work, we used a machine-learning approach to develop a sequence of example visuals of chemical molecules for low-performing students. This study tested the effectiveness of this sequence in comparison to an expert-generated sequence in a randomized experiment as part of an undergraduate chemistry course. We determined students' performance based on log data from an educational technology they used in the course. Results show that the machine-learned sequence was more effective for low-performing students. The expert sequence was more effective for high-performing students. Our results can inform the development of perceptual-fluency trainings for adaptive educational technologies.
机译:大多数STEM域使用多种视觉表示来说明复杂的概念。尽管许多研究都集中在帮助学生理解视觉效果上,但学生还必须在感知上熟练地流利地快速而轻松地在视觉效果之间进行翻译。由于感知流利度是通过隐式,非语言过程获得的,因此感知流利度培训提供了简单的分类任务,这些任务在众多示例中会改变视觉特征。先前的研究表明,从这些培训中学习会受到示例序列的强烈影响。此外,先前的研究表明,感知流利度培训对于成绩优异的学生最有效,但可能会使成绩不好的学生感到困惑。我们建议,对表现不佳的学生缺乏好处,可能是由于通常会进行感知流利培训的讲师的感知专家盲点所致:专家教官可能无法预期那些在视觉上看不到有意义信息的学生的需求。在先前的工作中,我们使用机器学习方法为表现不佳的学生开发了一系列化学分子的视觉实例。这项研究与作为本科化学课程一部分的随机实验中专家生成的序列相比,测试了该序列的有效性。我们根据他们在课程中使用的教育技术的日志数据确定学生的表现。结果表明,机器学习的顺序对于成绩较差的学生更有效。专家序列对成绩优异的学生更有效。我们的结果可以为适应性教育技术的感知流利训练的发展提供信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号