首页> 外文会议>International Conference on Artificial Intelligence and Data Processing >Vision Based Autonomous Runway Identification and Position Estimation for UAV Landing
【24h】

Vision Based Autonomous Runway Identification and Position Estimation for UAV Landing

机译:基于视觉的无人机着陆自主跑道识别与位置估计

获取原文

摘要

Vision based autonomous landing has turned out to be a deep-seated technology of UAV (Un-manned Aerial Vehicle) navigation, guidance and control system in the present scenario of image processing techniques. This study focuses on the two main UAV landing problems reliant on the airborne front-looking cam: how the runway can be recognized in image frames taken by the nose camera (a novel algorithm has been presented which includes Otsu's method, Sobel operator for edge detection, spectral residual saliency map (SRS), binary gradient mask and dilation); Second problem is how to align the UAV according to the runway position for critical landing phase (pixel approximation technique has been employed to estimate the position of the runway left, right, sharp left, sharp right, top or bottom for the support of landing UAV). The results obtained in present experimental method rigorously validated the effectiveness and strength of the proposed method. Moreover, accuracy of the implied runway recognition model is found to be 94% and the processing time is 0.32s which outperforms the other reported models. It is strongly believed that these results would open new vistas for the upcoming studies in the field.
机译:在当前的图像处理技术中,基于视觉的自主着陆已成为UAV(无人机)导航,制导和控制系统的一项深层技术。这项研究着重于依赖于机载前视凸轮的两个主要无人机降落问题:如何在机头摄像头拍摄的图像帧中识别跑道(已提出了一种新颖的算法,其中包括Otsu方法,Sobel算子用于边缘检测) ,频谱残留显着图(SRS),二进制梯度掩码和膨胀);第二个问题是如何根据关键着陆阶段的跑道位置对准无人机(像素近似技术已被用来估计跑道的左,右,左急,右急,上,下的位置,以支持着陆无人机)。本实验方法获得的结果严格验证了该方法的有效性和强度。此外,隐含跑道识别模型的准确性为94%,处理时间为0.32s,优于其他报道的模型。坚信这些结果将为该领域即将开展的研究打开新的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号