首页> 外文会议>Intelligent user interfaces >Automatically Identifying Targets Users Interact with During Real World Tasks
【24h】

Automatically Identifying Targets Users Interact with During Real World Tasks

机译:自动识别在实际任务中与用户进行交互的目标

获取原文
获取原文并翻译 | 示例

摘要

Information about the location and size of the targets that users interact with in real world settings can enable new innovations in human performance assessment and software usability analysis. Accessibility APIs provide some information about the size and location of targets. However this information is incomplete because it does not support all targets found in modern interfaces and the reported sizes can be inaccurate. These accessibility APIs access the size and location of targets through low-level hooks to the operating system or an application. We have developed an alternative solution for target identification that leverages visual affordances in the interface, and the visual cues produced as users interact with targets. We have used our novel target identification technique in a hybrid solution that combines machine learning, computer vision, and accessibility API data to find the size and location of targets users select with 89% accuracy. Our hybrid approach is superior to the performance of the accessibility API alone: in our dataset of 1355 targets covering 8 popular applications, only 74% of the targets were correctly identified by the API alone.
机译:与用户在现实环境中进行交互的目标的位置和大小有关的信息可以在人员绩效评估和软件可用性分析方面实现新的创新。可访问性API提供了有关目标大小和位置的一些信息。但是,此信息不完整,因为它不支持现代界面中找到的所有目标,并且报告的大小可能不准确。这些可访问性API通过与操作系统或应用程序的低级挂钩来访问目标的大小和位置。我们已经开发了一种用于目标识别的替代解决方案,该解决方案利用了界面中的可视能力以及随着用户与目标交互而产生的视觉提示。我们在混合解决方案中使用了我们新颖的目标识别技术,该解决方案结合了机器学习,计算机视觉和可访问性API数据,以89%的准确性查找用户选择的目标的大小和位置。我们的混合方法优于仅可访问性API的性能:在我们的1355个目标的数据集中,涵盖了8种流行的应用程序,仅API即可正确识别出74%的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号