首页> 外文会议>Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods >Neural network modeling of new energy function for stereo matching
【24h】

Neural network modeling of new energy function for stereo matching

机译:立体匹配新能量函数的神经网络建模

获取原文
获取原文并翻译 | 示例

摘要

Abstract: In vision research, most problems can be modeled as minimizing an energy function. Particularly, stereo matching can be viewed as one of the optimization problems in which the constraints must be satisfied simultaneously. Neural networks have been demonstrated to be very effective in computing these problems. In this paper, an approach to solve the stereo matching problem using the neural network with a new energy function is presented. The new energy function is derived not only to satisfy three constraints of similarity, smoothness, and uniqueness, but also to ensure Hopfield's convergence rules of symmetrical interconnection strength without self-feedback. Experimental results shows good stereo matching for sparse random dot stereograms and real images.!10
机译:摘要:在视觉研究中,大多数问题都可以建模为最小化能量函数。特别地,立体声匹配可以被视为必须同时满足约束条件的优化问题之一。神经网络已被证明在解决这些问题方面非常有效。本文提出了一种利用具有新能量函数的神经网络解决立体匹配问题的方法。推导新的能量函数不仅要满足相似性,光滑性和唯一性这三个约束,而且要确保Hopfield对称互连强度的收敛规则而无需自反馈。实验结果表明,对于稀疏的随机点立体图和真实图像,立体匹配都很好。10

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号