首页> 外文会议>Intelligent control and automation >Multi-objective Flow Shop Scheduling UsingDifferential Evolution
【24h】

Multi-objective Flow Shop Scheduling UsingDifferential Evolution

机译:基于差分进化的多目标流水车间调度

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an effective Differential Evolution (DE) basedrnhybrid algorithm for Multi-objective Permutation Flow Shop Scheduling Problemrn(MPFSSP), which is a typical NP-hard combinatorial optimization problem. In thernproposed Multi-objective Hybrid DE (MOHDE), both DE-based searchingrnoperators and some special local searching operators are designed to balance thernexploration and exploitation abilities. Firstly, to make DE suitable for solvingrnMPFSSP, a largest-order-value (LOV) rule based on random key representation isrndeveloped to convert the continuous values of individuals in DE to jobrnpermutations. Then, to enrich the searching behaviors and to avoid prematurernconvergence, a Variable Neighborhood Search (VNS) based local search withrnmultiple different neighborhoods is designed and incorporated into thernMOHDE. Simulation results and comparisons with the famous random-weightrngenetic algorithm (RWGA) demonstrate the effectiveness and robustness of ourrnproposed MOHDE.
机译:针对多目标排列流水车间调度问题(MPFSSP),提出了一种有效的基于差分演化(DE)的混合算法,该算法是典型的NP-hard组合优化问题。在提出的多目标混合DE(MOHDE)中,设计了基于DE的搜索器和一些特殊的本地搜索算子,以平衡开发和开发能力。首先,为了使DE适合求解MPFSSP,开发了基于随机密钥表示的最大序值(LOV)规则,将DE中个体的连续值转换为工作排列。然后,为了丰富搜索行为并避免过早收敛,设计了基于可变邻域搜索(VNS)的具有多个不同邻域的本地搜索,并将其合并到MOHDE中。仿真结果和与著名的随机加权遗传算法(RWGA)的比较证明了我们提出的MOHDE的有效性和鲁棒性。

著录项

  • 来源
    《Intelligent control and automation》|2006年|1125–1136|共12页
  • 会议地点 Kunming(CN);Kunming(CN)
  • 作者单位

    Dept. of Automation, Tsinghua Uinv Beijing, 100084, P.R. China;

    Dept. of Automation, Tsinghua Uinv Beijing, 100084, P.R. Chinarnwangling@mail.tsinghua.edu.cn;

    Dept. of Automation, Tsinghua Uinv Beijing, 100084, P.R. China;

    Dept. of Automation, Tsinghua Uinv Beijing, 100084, P.R. China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号