首页> 外文期刊>Soft Computing >Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution
【24h】

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution

机译:基于差分进化的模因算法的多目标无等待流水车间调度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a memetic algorithm (MA) based on differential evolution (DE), namely MADE, is proposed for the multi-objective no-wait flow-shop scheduling problems (MNFSSPs). Firstly, a largest-order-value rule is presented to convert individuals in DE from real vectors to job permutations so that the DE can be applied for solving flow-shop scheduling problems (FSSPs). Secondly, the DE-based parallel evolution mechanism is applied to perform effective exploration, and several local searchers developed according to the landscape of multi-objective FSSPs are applied to emphasize local exploitation. Thirdly, a speed-up computing method is developed based on the property of the no-wait FSSPs. In addition, the concept of Pareto dominance is used to handle the updating of solutions in sense of multi-objective optimization. Due to the well balance between DE-based global search and problem-dependent local search as well as the utilization of the speed-up evaluation, the MNFSSPs can be solved effectively and efficiently. Simulation results and comparisons demonstrate the effectiveness and efficiency of the proposed MADE.
机译:针对多目标无等待流水车间调度问题(MNFSSP),提出了一种基于差分进化(DE)的模因算法(MA),即MADE。首先,提出了一个最大阶值规则,将DE中的个体从实向量转换为工作置换,以便将该DE用于解决流水车间调度问题(FSSP)。其次,采用基于DE的并行演化机制进行有效的探索,并根据多目标FSSP的情况开发了几个本地搜索器,以强调本地开发。第三,基于无等待FSSP的特性,开发了一种加速计算方法。此外,帕累托优势的概念用于处理多目标优化意义上的解决方案更新。由于基于DE的全局搜索和与问题相关的局部搜索之间的良好平衡以及加速评估的利用,可以有效地解决MNFSSP。仿真结果和比较证明了提出的MADE的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号