首页> 外文会议>Integration of constraint programming, artificial intelligence, and operations research >Boosting Efficiency for Computing the Pareto Frontier on Tree Structured Networks
【24h】

Boosting Efficiency for Computing the Pareto Frontier on Tree Structured Networks

机译:提高树结构网络上Pareto边界的计算效率

获取原文
获取原文并翻译 | 示例

摘要

Multi-objective optimization plays a key role in the study of real-world problems, as they often involve multiple criteria. In multi-objective optimization it is important to identify the so-called Pareto frontier, which characterizes the trade-offs between the objectives of different solutions. We show how a divide-and-conquer approach, combined with batched processing and pruning, significantly boosts the performance of an exact and approximation dynamic programming (DP) algorithm for computing the Pareto frontier on tree-structured networks, proposed in. We also show how exploiting restarts and a new instance selection strategy boosts the performance and accuracy of a mixed integer programming (MIP) approach for approximating the Pareto frontier. We provide empirical results demonstrating that our DP and MIP approaches have complementary strengths and outperform previous algorithms in efficiency and accuracy. Our work is motivated by a problem in computational sustainability concerning the evaluation of trade-offs in ecosystem services due to the proliferation of hydropower dams throughout the Amazon basin. Our approaches are general and can be applied to computing the Pareto frontier of a variety of multi-objective problems on tree-structured networks.
机译:多目标优化在研究现实世界中的问题中起着关键作用,因为它们经常涉及多个标准。在多目标优化中,重要的是要确定所谓的Pareto边界,该边界表征了不同解决方案的目标之间的权衡。我们展示了分治法与批处理和修剪相结合如何显着提高了精确和近似动态规划(DP)算法的性能,该算法用于在树结构网络上计算Pareto边界。如何利用重新启动和新的实例选择策略提高混合整数编程(MIP)方法的性能和准确性,以逼近帕累托边界。我们提供的经验结果表明,我们的DP和MIP方法具有互补的优势,并且在效率和准确性方面均优于以前的算法。由于整个亚马逊河流域水电大坝的扩散,生态系统服务的权衡评估存在计算可持续性问题,这是我们开展工作的动力。我们的方法是通用的,可以应用于计算树结构网络上各种多目标问题的帕累托边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号