首页> 外文会议>Integration of constraint programming, artificial intelligence, and operations research >Frequency-Based Multi-agent Patrolling Model and Its Area Partitioning Solution Method for Balanced Workload
【24h】

Frequency-Based Multi-agent Patrolling Model and Its Area Partitioning Solution Method for Balanced Workload

机译:均衡工作量的基于频率的多智能体巡逻模型及其区域划分求解方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-agent patrolling problem has received growing attention from many researchers due to its wide range of potential applications. In realistic environment, e.g., security patrolling, each location has different visitation requirement according to the required security level. Therefore, a patrolling system with non-uniform visiting frequency is preferable. The difference in visiting frequency generally causes imbal-anced workload amongst agents leading to inefficiency. This paper, thus, aims at partitioning a given area to balance agents' workload by considering that different visiting frequency and then generating route inside each sub-area. We formulate the problem of frequency-based multi-agent patrolling and propose its semi-optimal solution method, whose overall process consists of two steps - graph partitioning and sub-graph patrolling. Our work improve traditional k-means clustering algorithm by formulating a new objective function and combine it with simulated annealing - a useful tool for operations research. Experimental results illustrated the effectiveness and reasonable computational efficiency of our approach.
机译:多代理巡逻问题由于其潜在的广泛应用而受到越来越多的研究人员的关注。在实际环境中,例如安全巡逻,根据所需的安全级别,每个位置都有不同的访问要求。因此,具有不均匀访问频率的巡逻系统是优选的。访问频率的差异通常会导致代理之间的工作负载不平衡,从而导致效率低下。因此,本文旨在通过考虑不同的访问频率,然后在每个子区域内生成路由,来划分给定区域以平衡代理的工作量。我们提出了基于频率的多智能体巡逻问题,并提出了半最优解方法,其总体过程包括图划分和子图巡逻两个步骤。我们的工作通过制定新的目标函数并将其与模拟退火(用于运筹学的有用工具)相结合,改进了传统的k均值聚类算法。实验结果说明了该方法的有效性和合理的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号