首页> 外文会议>Metrology, Inspection, and Process Control for Microlithography XXXIII >Smart implant-layer overlay metrology to enable fab cycle time reduction
【24h】

Smart implant-layer overlay metrology to enable fab cycle time reduction

机译:智能植入层覆盖量测技术可缩短晶圆制造周期

获取原文
获取原文并翻译 | 示例

摘要

Overlay is one of the most critical design parameters in integrated circuit manufacturing. Maintaining goodoverlay performance during manufacturing is therefore essential in order to obtain high yield and to ensurethat the performance and reliability of the eventual semiconductor device is according to specifications. Forthat reason, optical metrology is nowadays extensively used in any production facility for overlay monitoringand process control. Overlay metrology is typically required after each lithography step for (nearly) every lot.The number of process and lithograpy steps have increased signigoficantly with advancing technology nodes andconsequently there is an increased demand for overlay metrology. Although the benets of overlay metrologyare obvious, the use of metrology should be kept at acceptable levels as it adds cost and increases fab cycletime. Virtual overlay metrology, the replacement of some real overlay measurements with predicted values, is aneu000bective solution for keeping the need for overlay metrology under control.In this work, we develop virtual overlay metrology for a series of nine implant layers. These nine layers areexposed by multiple scanners and an implant layer is not necessarily exposed by a single scanner. We usemachine learning algorithms to build prediction models for the implant-layer overlay. In particular, the modelsare built using neural networks with a set of specically engineered overlay predictors that capture the essenceof the physical concepts of the implant-layer overlay. The inclusion of domain expertise via these engineeredoverlay predictors is essential for achieving a model with high prediction capability.The capability of virtual overlay metrology is evaluated on production data. We show that the overlay predictionperformance is around 0.7 with respect to R2 statistics, and that virtual metrology is able to follow variationsin overlay and to identify outliers. We conclude that the overlay prediction model is suu000eciently accurate for theimplant layers under consideration and we estimate that a metrology reduction of about 70% can be achieved ifvirtual overlay metrology would be enabled in high-volume manufacturing.Virtual metrology can also be used for overlay control. A model can achieve high prediction capability (R2 → 1)only when the overlay levels exceed the baseline scanner performance. Once the root causes of the elevatedoverlay levels are eliminated, the prediction performance will be low again (R2 → 0). Overlay can be controlledby monitoring as many predictors as possible that may have a link with overlay. When virtual overlay metrologystarts to predict overlay levels above the scanner baseline performance, and correlation is found between measuredand predicted overlay (R2 → 1), actions should be triggered towards eliminating or controlling the root causes.
机译:覆盖是集成电路制造中最关键的设计参数之一。因此,为了获得高产量并确保最终的半导体器件的性能和可靠性符合规范,在制造过程中保持良好的覆盖性能至关重要。出于这个原因,如今,光学计量技术已在任何生产设施中广泛用​​于覆盖监控\过程控制。 \ r \ n随着先进的技术节点,工艺和光刻工艺的数量已大大增加,并且\ r \ n因此,对重叠计量的需求不断增加。通常,在每个光刻步骤之后(几乎)每批都需要重叠计量。\ r \ n尽管重叠计量学的好处显而易见,但应将计量学的使用保持在可接受的水平,因为这会增加成本并增加制造周期。虚拟叠层计量是用预测值代替某些实际叠层测量值的有效解决方案,可以控制对叠层计量的需求。\ r \ n在这项工作中,我们为一系列九个植入层。这九层由多个扫描仪并置,并且植入层不必由单个扫描仪暴露。我们使用\ r \ n机器学习算法来为植入层覆盖构建预测模型。特别是,模型使用神经网络和一组专门设计的覆盖预测器构建而成,这些预测器捕获了植入物层覆盖的物理概念的本质。通过这些经过工程设计的\ r \ noverlay预测器包含领域专业知识对于实现具有高预测能力的模型至关重要。\ r \ n可以根据生产数据评估虚拟叠加计量的能力。我们显示,相对于R2统计信息,覆盖预测\ r \ n性能约为0.7,并且虚拟度量能够跟踪变化\ r \ n覆盖并识别异常值。我们得出结论,对于所考虑的\ r \ n种植层,覆盖层预测模型是非常准确的,并且我们估计,如果能够在大批量生产中启用虚拟覆盖层计量,则可以实现约70%的计量减少。\ r \ n虚拟度量也可以用于覆盖控制。仅当覆盖级别超过基线扫描仪性能时,模型才能实现高预测能力(R2→1)\ r \。一旦消除了\ r \ noverlay级别升高的根本原因,预测性能将再次降低(R2→0)。可以通过监视尽可能多的可能具有覆盖链接的预测变量来控制覆盖。当虚拟覆盖层计量开始预测高于扫描仪基线性能的覆盖层水平,并且在测得的覆盖层与预测的覆盖层之间发现相关性(R2→1)时,应触发措施以消除或控制根本原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号