首页> 外文会议>Infrared Technology and Applications XLIII >Effects of doping on photoelectron kinetics and characteristics of quantum dot infrared photodetector
【24h】

Effects of doping on photoelectron kinetics and characteristics of quantum dot infrared photodetector

机译:掺杂对量子点红外光电探测器光电子动力学和特性的影响

获取原文
获取原文并翻译 | 示例

摘要

Quantum dot infrared photodetectors (QDIPs) have attracted significant attention due to selective photoresponse, high photoconductive gain, and numerous possibilities for nanoscale engineering of photoelectron processes, which control the detector characteristics. Our approach to improving QDIP performance is based on optimization of three dimensional nanoscale potential profile created by charged quantum dots (QDs). Nanoscale profile around QDs allows us to control photoelectron capture processes, which determines the photoelectron lifetime, detector operating speed, responsivity, the spectral density of noise, noise bandwidth, and the detector dynamic range. The nanoscale potential profile is determined by doping of QDs and inter-dot space. In this work, we study various ways of selective doping and its effects on characteristics of photodetectors. We investigate and compare intra-dot doping, inter-dot doping, and complex bipolar doping. To investigate effects of selective doping, we fabricated AlGaAs/InAs QD structures with n-doping of QD layers, structures with n-doping of barriers, and structures with p-doping of QD layers and n-doping of interdot space. We measured dark current, spectral photoresponse, voltage dependence of responsivity, and noise characteristic. The photoresponse is improved due to photon-electron coupling, which increases with QD filling by electrons. However, the noise current also increases due to increase in QD filling. Therefore, possibilities for improvement of QDIP structures with unipolar doping are very limited. Our results show that spectral photoresponse, responsivity, and detector sensitivity are substantially improved due to bipolar doping, which provides decoupled control of electron filling of QDs and the potential barriers around QDs.
机译:量子点红外光电探测器(QDIP)由于选择性的光响应,高的光导增益以及控制光电探测器特性的纳米级光电子工艺工程的众多可能性而引起了人们的极大关注。我们提高QDIP性能的方法基于对带电量子点(QD)创建的三维纳米级电势分布的优化。量子点周围的纳米级轮廓使我们能够控制光电子捕获过程,这决定了光电子的寿命,探测器的工作速度,响应度,噪声的频谱密度,噪声带宽以及探测器的动态范围。纳米级电势分布是通过掺杂QD和点间空间来确定的。在这项工作中,我们研究了选择性掺杂的各种方式及其对光电探测器特性的影响。我们调查并比较点内掺杂,点间掺杂和复杂的双极掺杂。为了研究选择性掺杂的效果,我们制造了具有QD层n掺杂的AlGaAs / InAs QD结构,具有势垒n掺杂的结构以及具有QD层p掺杂和点间距n掺杂的结构。我们测量了暗电流,光谱光响应,响应度的电压依赖性以及噪声特性。由于光子与电子的耦合,光响应得到了改善,光电子耦合随着电子的QD填充而增加。但是,由于QD填充的增加,噪声电流也会增加。因此,用单极掺杂来改善QDIP结构的可能性非常有限。我们的结果表明,由于双极掺杂,光谱光响应,响应度和检测器灵敏度得到了显着改善,这为QD的电子填充和QD周围的势垒提供了解耦控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号