首页> 外文会议>Information Retrieval Technology; Lecture Notes in Computer Science; 4182 >Chinese Question-Answering: Comparing Monolingual with English-Chinese Cross-Lingual Results
【24h】

Chinese Question-Answering: Comparing Monolingual with English-Chinese Cross-Lingual Results

机译:中文问题解答:单语与英汉跨语言结果的比较

获取原文
获取原文并翻译 | 示例

摘要

A minimal approach to Chinese factoid QA is described. It employs entity extraction software, template matching, and statistical candidate answer ranking via five evidence types, and does not use explicit word segmentation or Chinese syntactic analysis. This simple approach is more portable to other Asian languages, and may serve as a base on which more precise techniques can be used to improve results. Applying to the NTCIR-5 monolingual environment, it delivers medium top-1 accuracy and MRR of .295, .3381 (supported answers) and .41, .4998 (including unsupported) respectively. When applied to English-Chinese cross language QA with three different forms of English-Chinese question translation, it attains top-1 accuracy and MRR of .155, .2094 (supported) and .215, .2932 (unsupported), about ~52% to ~62% of monolingual effectiveness. CLQA improvements via successively different forms of question translation are also demonstrated.
机译:描述了对中国人形质量保证的最小方法。它使用实体提取软件,模板匹配和通过五种证据类型的统计候选答案排名,并且不使用显式分词或中文句法分析。这种简单的方法更易于移植到其他亚洲语言,并且可以作为更精确的技术用于改善结果的基础。适用于NTCIR-5单语言环境,它提供中等的top-1精度和MRR,分别为.295,.3381(支持的答案)和.41,.4998(包括不支持的)。应用于具有三种不同形式的英汉问题翻译的英汉跨语言质量检查时,它的top-1准确性和MRR为.155,.2094(支持)和.215,.2932(不支持),约为〜52 %至单语效率的〜62%。还演示了通过依次不同形式的问题翻译改进的CLQA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号