首页> 外文会议>Information processing in computer-assisted interventions >Image-Based Automatic Ablation Point Tagging System with Motion Correction for Cardiac Ablation Procedures
【24h】

Image-Based Automatic Ablation Point Tagging System with Motion Correction for Cardiac Ablation Procedures

机译:基于图像的带有运动校正的自动消融点标记系统,用于心脏消融手术

获取原文
获取原文并翻译 | 示例

摘要

X-ray fluoroscopically guided cardiac ablation procedures are commonly carried out for the treatment of cardiac arrhythmias, such as atrial fibrillation (AF). X-ray images have poor soft tissue contrast and* for this reason, overlay of a 3D roadmap derived from pre-procedural volumetric image data can be used to add anatomical information. It is a requirement to determine and record the 3D positions of the ablation catheter tip in the 3D road map during AF ablation. This feature can be used as a guidance and post-procedure analysis tool. The 3D positions of the catheter tip can be calculated from biplane X-ray images and mapped to the 3D roadmap. However, the registration between the 3D roadmap and the 2D X-ray data can be compromised by patient respiratory and cardiac motions. As the coronary sinus (CS) catheter is not routinely altered during the procedure, tracking the CS catheter in real-time can be used as means of motion correction to improve the accuracy of registration between live X-ray images and a 3D roadmap. To achieve a fast and automatic ablation point tagging system from biplane images, we developed a novel tracking method for real-time simultaneous detection of the ablation catheter and the CS catheter from fluoro-scopic X-ray images. We tested our tracking method on 1083 fluoroscopy frames from 16 patients and achieved a success rate of 97.5% and an average 2D tracking error of 0.5 mm ± 0.3 mm. In order to achieve tagging using a mono-plane X-ray image system, we proposed a novel motion gating method to select a pair of images from two short image sequences acquired from two different views. Both respiratory and cardiac motion phases are matched by selecting the pair of images with the minimum reconstruction error of the CS catheter electrodes. Finally, the 3D position of the ablation catheter tip was calculated using the epi-polar constraint from the multiview images. We validated our automatic ablation point tagging strategy by computing the reconstruction error of the ablation catheter tip and achieved an error of 1.1 mm ±0.5 mm.
机译:X射线透视引导下的心脏消融手术通常用于治疗心律不齐,例如房颤(AF)。 X射线图像的软组织对比度很差,并且*出于这个原因,从过程前体积图像数据得出的3D路线图的叠加可用于添加解剖信息。在消融期间,需要在3D路线图中确定并记录消融导管尖端的3D位置。此功能可以用作指导和过程后分析工具。可以从双平面X射线图像计算导管尖端的3D位置,并将其映射到3D路线图。但是,3D路线图和2D X射线数据之间的配准会因患者的呼吸运动和心脏运动而受到损害。由于冠状窦(CS)导管在手术过程中没有常规更换,因此实时跟踪CS导管可用作运动校正手段,以提高实时X射线图像和3D路线图之间的配准精度。为了从双翼飞机图像中获得快速,自动的消融点标记系统,我们开发了一种新颖的跟踪方法,用于从荧光X射线图像中实时同时检测消融导管和CS导管。我们在来自16位患者的1083幅荧光检查镜架上测试了我们的跟踪方法,成功率为97.5%,平均2D跟踪误差为0.5 mm±0.3 mm。为了使用单平面X射线图像系统实现标记,我们提出了一种新颖的运动门控方法,该方法可以从从两个不同的视图获取的两个短图像序列中选择一对图像。通过选择CS导管电极重建误差最小的图像对,可以使呼吸运动阶段和心脏运动阶段都匹配。最后,使用消极约束从多视图图像计算消融导管尖端的3D位置。我们通过计算消融导管尖端的重建误差验证了我们的自动消融点标记策略,并实现了1.1 mm±0.5 mm的误差。

著录项

  • 来源
  • 会议地点 Berlin(DE);Berlin(DE)
  • 作者单位

    Division of Imaging Sciences and Biomedical Engineering, King's College London,SE1 7EH, UK;

    Division of Imaging Sciences and Biomedical Engineering, King's College London,SE1 7EH, UK;

    Philips Healthcare, Best, The Netherlands;

    Department of Cardiology, Guy's St. Thomas' Hospitals NHS Foundation Trust,London, SE1 7EH, UK;

    Department of Cardiology, Guy's St. Thomas' Hospitals NHS Foundation Trust,London, SE1 7EH, UK;

    Division of Imaging Sciences and Biomedical Engineering, King's College London,SE1 7EH, UK;

    Division of Imaging Sciences and Biomedical Engineering, King's College London,SE1 7EH, UK;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 信息处理(信息加工);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号