首页> 外文会议>Independent component analyses, wavelets, neural networks, biosystems, and nanoengineering IX >Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells
【24h】

Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

机译:高斯图形建模揭示胶质母细胞瘤细胞中特定的脂质相关性

获取原文
获取原文并翻译 | 示例

摘要

Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies
机译:生物样品的高通量测量技术的进步有必要发展生物驱动的计算技术。为了了解许多人类疾病(例如癌症)的分子水平,脂质定量显示提供了揭示疾病特定法规的绝好机会。然而,细胞脂质组的数据分析仍然是一项艰巨的任务,不能仅凭直觉就可以完成。我们已经开发出一种方法来识别完全相关于疾病的脂质相关网络。高斯图形模型(GGM)是一种将各种样品的实验测得脂质水平相关联的有效方法,该模型基于部分相关系数。与常规的Pearson相关性不同,部分相关性旨在仅标识直接相关性,同时消除间接相关性。但是,整个数据集上的常规GGM计算无法提供有关疾病样本是否与疾病样本真正相关的信息,而不是对照样本的相关信息。因此,我们实施了一种新颖的差分GGM方法,仅揭示了疾病特定的相关性,并将其应用于永生的胶质母细胞瘤肿瘤细胞的脂质组中。为了评估脂质重塑的结果,质谱分析了一大批脂质种类,这些脂质重塑是细胞微扰的组合,诱导程序性细胞死亡,而其他微扰仅作为生物学对照。利用差异型GGM,我们能够揭示胶质母细胞瘤特异性脂质的相关性,从而推进新型基因疗法的生物医学研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号