首页> 外文会议>Image Analysis and Recognition pt.2; Lecture Notes in Computer Science; 4142 >Model Based Selection and Classification of Local Features for Recognition Using Gabor Filters
【24h】

Model Based Selection and Classification of Local Features for Recognition Using Gabor Filters

机译:基于模型的Gabor滤波器识别特征的选择和分类

获取原文
获取原文并翻译 | 示例

摘要

We propose models based on Gabor functions to address two related aspects in the object recognition problem: interest point selection and classification. We formulate the interest point selection problem by a cascade of bottom-up and top-down stages. We define a novel type of top-down saliency operator to incorporate low-level object related knowledge very soon in the recognition process, thus reducing the number of canditates. For the classification process, we represent each interest point by a vector of Gabor responses whose parameters are automatically selected. Both the selection and classification procedures are designed to be invariant to rotations and scaling. We apply the approach to the problem of facial landmark classification and present experimental result illustrating the performance of the proposed techniques.
机译:我们提出基于Gabor函数的模型,以解决对象识别问题中的两个相关方面:兴趣点选择和分类。我们通过自下而上和自上而下的级联来公式化兴趣点选择问题。我们定义了一种新型的自上而下的显着性运算符,以在识别过程中很快合并低级对象相关的知识,从而减少候选者的数量。对于分类过程,我们通过Gabor响应向量来表示每个兴趣点,其参数是自动选择的。选择和分类过程均设计为不变于旋转和缩放。我们将该方法应用于人脸界标分类问题,并给出了说明所提出技术性能的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号